Sifat-sifat penjumlahan dan pengurangan pecahan sama seperti sifat-sifat penjumlahan bulangan bulat. Pada bilangan bulat kita mengenal lima sifat yakni sifat tertutup, sifat komutatif, sifat asosiatif, mempunyai unsur identitas, dan mempunyai invers. Kelima unsur-unsur tersebut juga dimiliki pada penjumlahan dan pengurangan pada bilangan pecahan.
Sifat Tertutup
Sifat tertutup maksudnya bahwa pada penjumlahan dan pengurangan pecahan akan selalu menghasilkan bilangan pecahan juga. Hal ini dapat dituliskan bahwa “untuk setiap bilangan pecahan a dan b, berlaku a + b = c dengan c juga bilangan pecahan”
Untuk lebih memantapkan pemahaman Anda tentang sifat tertutup pada penjumlahan dan pengurangan bilangan pecahan, silahkan simak contoh soal di bawah ini.
Contoh Soal 1
- ¼ + ½ = ¾
di mana kita ketahui bahwa ¼ dan ½ merupakan bilangan pecahan dan ¾ juga merupakan bilangan pecahan.
- ¾ + (– ½) = ¼
Kita ketahui bahwa bilangan ¾ dan – ½ merupakan bilangan pecahan dan bilangan ¼ juga merupakan bilangan pecahan.
Sifat Komutatif (Pertukaran)
Penjumlahan dan pengurangan dua bilangan pecahan selalu diperoleh hasil yang sama walaupun kedua bilangan tersebut dipertukarkan tempatnya. Hal ini dapat dituliskan bahwa “untuk setiap bilangan pecahan a dan b, selalu berlaku a + b = b + a”.
Untuk lebih memantapkan pemahaman Anda tentang sifat komutatif (pertukaran) pada penjumlahan dan pengurangan bilangan pecahan, silahkan simak contoh soal di bawah ini.
Contoh Soal 2
- ½ + ¾ = ¾ + ½ = 5/4
- (–5/6) + ½ = ½ + (–5/6) = – 2/6 = – 1/3
Sifat Asosiatif (Pengelompokan)
Sifat asosiatif (pengelompokan) pada penjumlahan dan pengurangan pada bilangan pecahan menyatakan bahwa “untuk setiap bilangan pecahan a, b, dan c, berlaku (a + b) + c = a + (b + c).
Untuk lebih memantapkan pemahaman Anda tentang sifat asosiatif (pengelempokan) pada penjumlahan dan pengurangan bilangan pecahan, silahkan simak contoh soal di bawah ini.
Contoh Soal 3
- (3/5 + (–6/5)) + 7/5 = –3/5 + 7/5 = 4/5
=> 3/5 + ((–6/5) + 7/5) = 3/5 + 1/5 = 4/5
Jadi, (3/5 + (–6/5)) + 7/5 = 3/5 + ((–6/5) + 7/5)
- (–2/5 + (–8/5)) + 12/5 = –10/5 + 12/5 = 2/5
=>–2/5 + ((–8/5) + 12/5) = –2/5 + 4/5 = 2/5
Jadi, (–2/5 + (–8/5)) + 12/5 = –2/5 + ((–8/5) + 12/5)
Mempunyai Unsur Identitas
Bilangan 0 (nol) merupakan unsur identitas pada penjumlahan dan pengurangan pada bilangan bulat maupun pecahan. Artinya, untuk sebarang bilangan pecahan apabila ditambah 0 (nol), hasilnya adalah bilangan pecahan itu sendiri. Hal ini dapat dituliskan bahwa “Untuk sebarang bilangan pecahan a, selalu berlaku a + 0 = 0 + a = a.
Mempunyai invers
Invers suatu bilangan pecahan artinya lawan dari bilangan pecahan tersebut. Suatu bilangan dikatakan mempunyai invers jumlah, apabila hasil penjumlahan bilangan tersebut dengan inversnya (lawannya) merupakan unsur identitas yaitu 0 (nol). Invers dari bilangan pecahan a adalah bilangan pecahan –a, sedangkan invers dari bilangan pecahan –a adalah bilangan pecahan a. Dengan kata lain, untuk setiap bilangan pecahan selain nol pasti mempunyai invers, sedemikian sehingga berlaku a + (–a) = (–a) + a = 0.
Demikian postingan kami tentang sifat-sifat pada penjumlahan dan pengurangan bilangan pecahan.
Artikel Paling Populer :
- Fungsi Komposisi, Aljabar Fungsi Dan Komposisi… Pengertian, Sifat Fungsi Komposisi, Aljabar Fungsi Dan Komposisi Fungsi Matematika Disertai Rumus Soal Sebuah produk massal biasanya dibuat melalui beberapa proses. Proses-proses tersebut ditangani oleh mesin-mesin yang berbeda. Urutan pengerjaan produk…
- Pengertian Kata Bilangan, Jenis-Jenis dan Contoh… Pengertian Kata Bilangan, Jenis-Jenis dan Contoh Kata Bilangan (Numeralia) Lengkap – Kata bilangan atau Numeralia adalah kata yang menyatakan jumlah benda atau urutannya dalam suatu deretan. Ada 2 jenis kata…
- Cara Menentukan Kelipatan Suatu Bilangan Bulat Positif Materi kelipatan suatu bilangan bulat positif merupakan materi dasar yang Anda harus kuasai untuk menguasai materi kelipatan persekutuan terkecil (KPK) yang akan kita bahas pada postingan berikutnya. Materi ini sudah…
- Himpunan Penyelesaian Persamaan Linear Satu Variabel Sebelumnya sudah dibahas bahwa kalimat terbuka yang dihubungkan oleh tanda sama dengan (=) disebut persamaan, sedangkan persamaan dengan satu variabel berpangkat satu atau berderajat satu disebut persamaan linear satu variabel. Bagaimana cara menentukan…
- Operasi Perkalian pada Bilangan Bulat Kita ketahui bahwa perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Agar lebih memahami maksud pernyataan tersebut silahkan perhatikan contoh berikut. 3 × 2 = 2 + 2 + 2 = 6 2 × 3…
- Cara Membuat / Menggambar Diagram Venn Jika Anda mempelajari konsep himpunan maka Anda akan mengenal sub materi tentang Diagram Venn atau diagram gambar. Apa itu pengertian diagram ven? Pengertian Diagram Venn Cara yang memudahkan kita untuk…
- Penjumlahan dan Metode Penjumlahan Penjumlahan dan Metode Penjumlahan Penjumlahan merupakan salah satu dari empat operasi aritmatika dasar dalam matematika yaitu penjumlahan, pengurangan, perkalian dan pembagian. Operator ini digunakan untuk menjumlahkan dua atau lebih bilangan…
- Proporsi Proporsi Perbandingan/rasio dan proporsi merupakan dasar utama untuk memahami berbagai konsep dalam matematika maupun sains. Proporsi mengatakan bahwa dua perbandingan (atau dua pecahan) adalah sama. Dengan kalimat lain dua buah perbandingan dikatakan…
- Operasi Pembagian pada Bilangan Bulat Untuk memahami operasi pembagian pada bilangan bulat, Anda harus paham dengan konsep operasi perkalian pada bilangan bulat karena pembagian merupakan operasi kebalikan dari perkalian. Untuk lebih mudah memahami pernyataan bahwa operasi kebalikan dari…
- Cabang-Cabang Matematika Cabang Matematika Cabang utama matematika adalah aljabar, teori bilangan, geometri dan aritmatika. Berdasarkan cabang-cabang ini utama ini cabang-cabang lain telah ditemukan. Sebelum munculnya zaman modern, studi matematika sangat terbatas. Namun seiring…
- Pengertian Bilangan, Macam-Macam Bilangan dan… Pengertian Bilangan, Macam-Macam Jenis Bilangan dan Contohnya Lengkap – Kali ini kita akan membahas tentang pengertian bilangan dan macam-macam jenis bilangan beserta contoh bilangannya. Pengertian Bilangan Bilangan adalah suatu konsep matematika…
- Cara Menentukan Faktor Suatu Bilangan Bulat Cara menentukan faktor suatu bilangan bulat sangat penting dan Anda harus menguasainya karena materi ini merupakan materi dasar untuk menguasai konsep faktor persekutuan terbesar (FPB) yang nantinya akan dibahas setelah…
- Faktor Persekutuan Terbesar (FPB) Suatu Bilangan Bulat Sebelum membahas tentang faktor pesekutuan terbesar (FPB) dari dua atau lebih bilangan bulat, silahkan simak contoh soal berikut “Ibu Ani akan membuat parcel buah yang berisi tiga jenis buah yakni…
- Kelipatan Persekutuan Terkecil (KPK) dari Dua… Mungkin Anda pernah melihat soal seperti berikut ini atau sejenisnya. “Iwan, Seno dan Budi adalah teman sekelas dan memiliki hobi yang sama yaitu sama-sama pecinta permainan bulutangkis. Mereka akan mengikuti…
- Operasi Penjumlahan dan Pengurangan Pecahan Operasi Penjumlahan dan Pengurangan Pecahan dapat dilakukan jika penyebut kedua atau lebih dari pecahan tersebut memiliki nilai yang sama. Penjumlahan dan Pengurangan Pecahan Yang Penyebutnya Sama Misalkan “Budi dan Iwan masing-masing…
- Pengertian dan Cara Menentukan Pecahan Senilai Sebelumnya sudah membahas tentang pengertian bilangan pecahan dan contohnya dalam kehidupan sehari-hari. Sedangkan, postingan kali ini akan membahas tentang pengertian pecahan senilai dan cara menentukan bahwa dua pecahan dikatakan senailai. Untuk lebih…
- Cara Mengubah Bentuk Pecahan ke Bentuk Persen Kita ketahui bahwa pecahan merupakan bilangan yang dinyatakan dengan a/b, di mana a merupakan pembilang dan b merupakan penyebut, sedangkan persen dapat diartikan sebagai perseratus yang ditulis dengan notasi %.…
- Matriks – Operasi Matriks, Rumus, Contoh Soal… Matriks – Operasi Matriks, Rumus, Contoh Soal Matriks dan Jawabannya Lengkap – Dalam matematika, matriks adalah susunan bilangan, simbol, atau ekspresi, yang disusun dalam baris dan kolom sehingga membentuk suatu bangun…
- Sifat-Sifat Operasi Himpunan Sifat-sifat irisan dan gabungan himpunan Kalian telah mempelajari bahwa anggota irisan dua himpunan adalah anggota persekutuan himpunan tersebut. Jika A = {1, 2, 3, 4}, B = {3, 4, 5}…
- Penyelesaian Persamaan Linear Satu Variabel Bentuk Pecahan Dalam menyelesaikan persamaan linear satu variabel (PLSV) yang berbentuk pecahan caranya hampir sama seperti mengerjakan PLSV yang bentuknya bukan pecahan yang sudah dibahas pada postingan sebelumnya dan tetnunya cara tersebut hampir sama…