Sebelumnya sudah membahas materi hubungan antar sudut, akan tetapi sekarang juga tetap membahas materi tentang hubungan antar sudut. Pembahasan kali ini lebih memfokuskan bagaimana hubungan antar sudut jika sudut-sudut tersebut sehadap dan berseberangan dan bagaiman jika sudut-sudut tersebut luar sepihak dan dalam sepihak. Oke, silahkan anda pelajari materinya kemudian pelajari cara menyelesaikan soal-soalnya yang berkaitan dengan materi ini.
Sudut-Sudut Sehadap dan Berseberangan
Sekarang coba perhatikan gambar di bawah ini.
Pada gambar di atas, garis m // n dan dipotong oleh garis l. Titik potong garis l terhadap garis m dan n berturut-turut di titik P dan titik Q. Pada gambar di atas, tampak bahwa sudut P2 dan sudut Q2 menghadap arah yang sama. Demikian juga sudut P1 dan sudut Q1, sudut P3 dan sudut Q3, serta sudut P4 dan sudut Q4. Sudut-sudut yang demikian dinamakan sudut-sudut sehadap. Sudut sehadap besarnya sama.
Jika dua buah garis sejajar dipotong oleh garis lain maka akan terbentuk empat pasang sudut sehadap yang besarnya sama. Jadi, dapat dituliskan
∠P1 sehadap dengan ∠Q1 dan ∠P1 = ∠Q1;
∠P2 sehadap dengan ∠Q2 dan ∠P2 = ∠Q2;
∠P3 sehadap dengan ∠Q3 dan∠P3 = ∠Q3;
∠P4 sehadap dengan ∠Q4 dan ∠P4 = ∠Q4.
Contoh soal dan Pembahasan tentang Sudut-Sudut Sehadap
Perhatikan gambar di bawah ini.
- Sebutkan pasangan sudut-sudut sehadap.
- Jika besar∠K1 = 102°, tentukan besar
- ∠L1;
- ∠K2;
- ∠L2.
Penyelesaian
- Berdasarkan gambar di samping diperoleh
∠K1 sehadap dengan ∠L1
∠K2 sehadap dengan ∠L2
∠K3 sehadap dengan ∠L3
∠K4 sehadap dengan ∠L4
- Jika∠K1 = 102° maka
- ∠L1 = ∠K1 (sehadap) = 102°
- ∠K2 = 180° – ∠K1 (berpelurus) = ∠K2 = 180° – 102° = ∠K2 = 78°
- ∠L2 = ∠K2 (sehadap) = ∠L2 = 78o
Sekarang perhatikan gambar di bawah ini.
Pada gambar tersebut besar ∠P3 = ∠Q1 dan ∠P4 = sudut Q2. Pasangan sudut P3 dan sudut 1, serta sudut P4 dan sudut Q2 disebut sudut-sudut dalam berseberangan. Jika dua buah garis sejajar dipotong oleh garis lain, besar sudut-sudut dalam berseberangan yang terbentuk adalah sama besar.
Sekarang perhatikan pasangan sudut P1 dan sudut Q3, serta sudut P2 dan sudut Q4. Pasangan sudut tersebut adalah sudut-sudut luar berseberangan, di mana sudut P1 = sudut Q3 dan sudut P2 = sudut Q4. Jika dua buah garis sejajar dipotong oleh garis lain maka besar sudut-sudut luar berseberangan yang terbentuk adalah sama besar.
Contoh soal dan Pembahasan tentang Sudut-Sudut Berseberangan
Perhatikan gambar di atas.
- Sebutkan pasangan sudut- sudut dalam berseberangan.
- Jika ∠A1 = 75°, tentukan besar:∠A2;∠A3; dan ∠B4.
Penyelesaian:
- Pada gambar di atas diperoleh
∠A1 dalam berseberangan dengan ∠B3;
∠A2 dalam berseberangan dengan ∠B4.
- Jika ∠A1 = 75° maka:
∠A2 = 180°– sudut A1 (berpelurus)
∠A2 = 180° – 75°
∠A2 = 105°
∠A3 = ∠A1 (bertolak belakang) = 75°
∠B4 = ∠A2 (dalam berseberangan) = 105°
Sudut-Sudut Dalam Sepihak dan Luar Sepihak
Sekarang perhatikan gambar di bawah ini.
Perhatikan Gambar di atas. Pada gambar tersebut garis m // n dipotong oleh garis l di titik P dan Q. Perhatikan sudut P3 dan sudut Q2. Kedua sudut tersebut terletak di dalam garis m dan n serta terhadap garis l keduanya terletak di sebelah kanan (sepihak). Pasangan sudut tersebut dinamakan sudut-sudut dalam sepihak. Dengan demikian diperoleh:
- ∠P3 dalam sepihak dengan ∠Q2;
- ∠P4 dalam sepihak dengan ∠Q1.
Sebelumnya telah sudah posting bahwa:
∠P3 = ∠Q3 (sehadap) dan
∠P2 = ∠Q2 (sehadap).
Padahal ∠2 = 180° – ∠P3 (berpelurus), sehingga
∠Q2 = ∠P2 = 180° – ∠P3 atau
∠P3 + ∠Q2 = 180°
Tampak bahwa jumlah ∠P3 dan ∠Q2 adalah 180°.
Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut dalam sepihak adalah 180°. Dengan cara yang sama, dapat dibuktikan bahwa ∠P4 + ∠Q1 = 180°.
Contoh Soal dan Pembahasan Tentang Sudut-Sudut Dalam Sepihak
Pada Gambar di atas, garis p // q dan garis r memotong garis p dan q di titik R dan S.
- Tentukan pasangan sudut-sudut dalam sepihak.
- Jika ∠S1 = 120°, tentukan ∠R2 dan ∠R3.
Penyelesaian:
- Berdasarkan gambar di samping diperoleh
∠R2 dalam sepihak dengan ∠S1;
∠R3 dalam sepihak dengan ∠S4.
- Jika ∠S1 = 120° maka
∠R2 + ∠S1 = 180° (dalam sepihak)
∠R2 = 180° – ∠S1
∠R2 = 180° – 120°
∠R2 = 60°
∠R3 =∠S1 (dalam berseberangan)
∠R3 = 120°
Sekarang perhatikan gambar di bawah ini.
Perhatikan kembali ∠P1 dengan ∠Q4 dan ∠P2 dengan ∠Q3 pada Gambar di atas. Pasangan sudut tersebut disebut sudut-sudut luar sepihak. Akan kita buktikan bahwa: ∠P1 + ∠Q4 = 180°.
∠ P1 + ∠ P4 = 180o (berpelurus)
Padahal ∠ P4 = ∠ Q4 (sehadap).
Terbukti bahwa ∠ P1 + ∠ Q4 = 180°.
Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut luar sepihak adalah 180°.
Artikel Paling Populer :
- Rumus Layang-Layang : Pengertian, Sifat, Menghitung… Rumus Luas dan Keliling Layang-Layang – Bangun layang-layang adalah? Apa rumus layang-layang? Sebutkan sifat-sifat layang-layang! Agar lebih memahaminya, kali ini kita akan membahas tentang pengertian bangun layang-layang, sifat, gambar, rumus, contoh…
- Perbandingan Segmen Garis Pada dasarnya materi perbandingan segmen garis hampir sama dengan perbandingan senilai atau seharga yang sudah diulas pada Materi matematika kelas VII Semester Ganjil pada postingan yang berjudul Cara Menghitung Perbandingan Seharga (senilai). Sebuah…
- Limas – Jaring-Jaring, Unsur-Unsur Limas, Rumus… Jaring-Jaring Limas, Unsur-Unsur Limas, Rumus Limas (Luas Permukaan dan Volume Limas) Beserta Contoh Soal dan Pembahasan – Limas adalah bangun ruang 3 dimensi yang dibatasi oleh alas berbentuk segi-n dan sisi-sisi tegak…
- Operasi Pembagian Pada Pecahan Masih ingatkah Anda dengan operasi pembagian pada bilangan bulat? Kita ketahui bahwa operasi pembagian pada bilangan bulat merupakan invers (kebalikan) dari perkalian. Hal ini juga berlaku pada pembagian bilangan pecahan. Pembagian Pecahan…
- Dinamika Partikel Ada yang sudah mengenal atau pernah mendengar mengenai istilah Dinamika Partikel? Simak penjelasan terlengkapnnya di bawah ini. Pengertian Dinamika Partikel Dinamika partikel merupakan suatu ilmu yang membahas tentang gaya-gaya yang…
- Operasi Pengurangan pada Bilangan Bulat Untuk menjumlahkan bilangan bulat dapat dilakukan dengan alat bantu yakni dengan garis bilangan. Bagaimana dengan pengurangan pada bilangan bulat? Sama seperti pada penjumlahan pada bilangan bulat, pengurangan pada bilangan bulat juga bisa menggunakan…
- Pengertian Bilangan Bulat Masih ingatkah Anda dengan bilangan cacah? Bilangan cacah sudah Anda pelajari pada saat duduk di bangku sekolah dasar. Coba Anda ingat kembali materi tersebut! Adapun bilangan cacah yaitu 0, 1,…
- Pengertian, Sifat, Jenis, Rumus dan Contoh Soal… Pengertian, Sifat, Jenis, Rumus dan Contoh Soal Trapesium Beserta Jawaban Lengkap – Trapesium adalah bangun datar dua dimensi tang dibentuk oleh 4 rusuk diantaranta saliung sejajar namun tidak sama panjang.…
- Pengertian Sudut dan Besar Sudut Mungkin Anda tidak asing dengan istilah "sudut". Misalnya anda mengarahkan lemparan anda dengan sudut lempara 20 derajat. Tahukah anda apa pengertian sudut? Pengertian Sudut Agar kalian dapat memahami pengertian sudut,…
- Hubungan Antarsudut (Pelurus, Penyiku, dan Bertolak… Pasangan Sudut yang Saling Berpelurus (Bersuplemen) Perhatikan gambar di bawah. Garis AB merupakan garis lurus, sehingga besar ∠AOB = 180°. Pada garis AB, dari titik O dibuat garis melalui C, sehingga…
- Cabang-Cabang Matematika Cabang Matematika Cabang utama matematika adalah aljabar, teori bilangan, geometri dan aritmatika. Berdasarkan cabang-cabang ini utama ini cabang-cabang lain telah ditemukan. Sebelum munculnya zaman modern, studi matematika sangat terbatas. Namun seiring…
- Cara Mengubah Pecahan Biasa Menjadi Pecahan Campuran Perlu kita ketahui bahwa bilangan pecahan campuran merupakan bilangan yang terdiri dari bilangan bulat dan bilangan pecahan. Untuk memahami cara mengubah pecahan biasa menjadi pecahan campuran atau dari pecahan campuran menjadi pecahan biasa,…
- Fungsi dari dimension tool adalah Fungsi dari dimension tool adalah... A. Membuat garis B. Membuat efek bayangan C. Membentuk garis dimensi vertikal, horizontal dan diagonal D. Membuat curva E. Memberi efek zoom Jawaban : C.…
- Gambar yang terbuat dari beberapa titik, garis dan… Gambar yang terbuat dari beberapa titik, garis dan arah disebut... A. 3D B. Vektor C. Animasi D. Bitmap E. 2D Jawaban : B. Vektor
- Pengertian Bangun Ruang : Macam Macam Bangun Ruang,… Pengertian Bangun Ruang : Macam Macam Bangun Ruang, Penjelasan dan Rumusnya Lengkap – Dalam matematika membahas tentang bangun ruang. Apa itu bangun ruang? Agar lebih memahaminya, kita akan membahas tentang pengertian bangun…
- Cara Menentukan Pecahan yang Nilainya di Antara Dua Pecahan Untuk menentukan pecahan yang nilainya di antara dua pecahan silahkan simak penjelasan berikut ini. Misalkan kita memiliki bilangan pecahan 1/3 dan 2/3. Sekarang coba pikirkan, apakah ada bilangan pecahan yang…
- Dinamika Gerak Rotasi : Pengertian, Rumus Dan… Dinamika Gerak Rotasi : Pengertian, Rumus Dan Pembahasan Contoh Soal – Aksi akrobat selalu menghadirkan decak kagum setiap orang yang menyaksikan. Atraksi yang sering dilakukan misalnya melipat tubuh dan menaiki roda yang…
- Pengertian Garis Lintang : Fungsi, Pembagian Iklim… Pengertian Garis Lintang – Apa yang dimaksud dengan garis lintang? Apa fungsi garis lintang? Jelaskan apa yang dimaksud dengan garis lintang dan garis bujur beserta fungsinya? Agar lebih memahaminya, kali…
- Sifat-Sifat Segitiga Secara Umum Kita sudah mengetahui pengertian dan jenis-jenis segitiga. Sekarang kita aka membahas mengenai sifat-sifat segitiga pada umum. Secara umum segitiga akan memeneuhi konsep ketidaksamaan segitiga, hubungan sudut dalam segitiga, dan hubungan sudut…
- Menggunakan Konsep Turunan Dalam Menggambar Kurva Polinom Selamat datang pada blog carabelajarmatematika.com, pada artikel kali ini kita akan membahas mengenai Konsep Turunan Dalam Menggambar Kurva Polinom. Langsung saja kita bahas penjelasannya dibawah ini. Grafik fungsi merupakan gambaran sebuah geometri dari sebuah…