Masih ingatkah Anda dengan bilangan cacah? Bilangan cacah sudah Anda pelajari pada saat duduk di bangku sekolah dasar. Coba Anda ingat kembali materi tersebut! Adapun bilangan cacah yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 … dan seterusnya. Untuk menggambarkannya ke dalam sebuah garis bilangan, dapat digunakan analogi ketika Anda berdiri di atas lantai berpetak dan tiap petak kita anggap sebagai sebuah titik. Di mana Anda berdiri salah satu petak dan petak tersebut namakan titik 0 (nol). Maka garis bilangannya akan tampak seperti gambar di bawah ini.
Pada petak di depannya kita beri angka 1, 2, 3, 4, ….dan seterusnya, jika Anda maju 2 langkah ke depan, berati Anda berdiri dipetak dengan angka +2. Selanjutnya, jika dari +2 Anda kemudian kamu mundur 1 langkah ke belakang, kamu berdiri di angka +1.
Nah yang jadi permasalahan adalah jika Anda mundur lagi 2 langkah ke belakang lagi. Berdiri di petak dengan angka berapakah Anda sekarang?
Sekarang perhatikan bahwa posisi 2 langkah ke depan dari titik nol (0) dinyatakan dengan +2. Demikian pula posisi 1 langkah ke depan dinyatakan dengan +1. Oleh karena itu, posisi 2 langkah ke belakang dari titik nol (0) dinyatakan dengan –2. Adapun posisi 1 langkah ke belakang dari titik nol (0) dinyatakan dengan –1.
Pasangan-pasangan bilangan seperti di atas jika dikumpulkan akan membentuk bilangan bulat. Tanda + pada bilangan bulat biasanya tidak ditulis. Kumpulan semua bilangan bulat disebut himpunan bilangan bulat dan dinotasikan dengan B = {…, –3, –2, –1, 0, 1, 2, 3, …}. Bilangan bulat terdiri atas himpunan bilangan bulat negatif {…, –3, –2, –1}, nol {0}, dan himpunan bilangan bulat positif {1, 2, 3, …}. Jika digambarkan pada garis bilangan akan tampak seperti gambar di bawah ini.
Berikut Mafia Online berikan beberapa contoh soal tentang bilangan bulat, silahkan simak baik-baik.
Contoh Soal
Tuliskan dan gambarkanlah dalam garis bilangan:
- Himpunan bilangan bulat di antara –5 dan 3!
- Himpunan bilangan genap di antara –4 dan 4!
- Himpunan bilangan ganjil di antara –2 dan 3!
Penyelesaian:
- Kita gambarkan terlebih dahulu bilanagn bulat antara antara –5 dan 3 ke dalam garis bilangan seperti gambar berikut.
Maka, himpunan bilangan bulat di antara –5 dan 3 adalah {–4, –3, –2, –1, 0, 1, 2}.
- Kita gambarkan terlebih dahulu bilanagn bulat antara antara –4 dan 4 ke dalam garis bilangan seperti gambar berikut.
Maka, himpunan bilangan bulat genap di antara –4 dan 4 adalah {–2, 0, 2}.
- Kita gambarkan terlebih dahulu bilanagn bulat antara antara –2 dan 3 ke dalam garis bilangan seperti gambar berikut.
Maka, himpunan bilangan bulat ganjil di antara –2 dan 3 adalah {–1, 1}.
Demikian postingan Mafia Online tentang pengetian bilangan bulat dan contoh soalnya. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas. Silahkan baca postingan berikutnya tentang penerapan bilangan bulat dalam kehidupan sehari-hari. Salam Mafia => Kita pasti bisa.
Artikel Paling Populer :
- Pengertian dan Cara Menentukan Pecahan Senilai Sebelumnya sudah membahas tentang pengertian bilangan pecahan dan contohnya dalam kehidupan sehari-hari. Sedangkan, postingan kali ini akan membahas tentang pengertian pecahan senilai dan cara menentukan bahwa dua pecahan dikatakan senailai. Untuk lebih…
- Sifat-Sifat Pembagian Pada Bilangan Bulat Untuk memahami sifat-sifat operasi pembagian pada bilangan bulat, Anda harus mengingat kembali sifat-sifat operasi perkalian pada bilangan bulat. Ada enam sifat-sifat perkalian pada bilangan bulat yang sudah dibahas pada postingan sebelumnya yakni…
- Sifat-Sifat Penjumlahan Bilangan Bulat Untuk menjumlahkan bilangan bulat ada dua cara yang bisa dilakukan yakni menjumlahkan dengan bantuan alat dan menjumlahkan tanpa bantuan. Untuk selengkapnya silahkan baca pada postingan sebelumnya yang berjudul “Operasi penjumlahan…
- Sifat-Sifat Bilangan Berpangkat Dalam postingan ini, masih dalam pembahsan perpangkatan yakni sifat-sifat bilangan berpangkat. Apa saja sifat-sifat bilangan berpangkat? Sifat perkalian bilangan berpangkat Pada perkalian bilangan berpangkat akan berlaku sifat sebagai berikut: pm × pn =…
- Pengertian Bilangan, Macam-Macam Bilangan dan… Pengertian Bilangan, Macam-Macam Jenis Bilangan dan Contohnya Lengkap – Kali ini kita akan membahas tentang pengertian bilangan dan macam-macam jenis bilangan beserta contoh bilangannya. Pengertian Bilangan Bilangan adalah suatu konsep matematika…
- Notasi Himpunan, Anggota Himpunan, dan Menyatakan Himpunan Pada postingan sebelumnya sudah dibahas tentang pengertian himpunan. Sekarang kita akan mempelajari bagaimana notasi dan anggota himpunan. Dalam dunia matematika, suatu himpunan dilambangkan dengan huruf kapital, misalnya A, B, C, D,…
- Pengertian Bilangan Pecahan Dalam kehidupan sehari-hari kita sering melihat benda-benda yang dibagi dengan ukuran yang sama, misalnya sebuah apel yang dibagi menjadi dua bagian yang sama dan sebuah kue tar (kue ulang tahun)…
- Pengertian Bilangan Pecahan dan Jenis-Jenis Bilangan… Pengertian Bilangan Pecahan dan Jenis-Jenis Bilangan Pecahan Serta Contohnya Kita dapat mengartikan secara singkat bahwa bilangan pecah dapat diartikan sebagai sebuah bilangan yang memiliki pembilang dan juga penyebut. Sedangkan yang…
- Pengertian Kata Bilangan, Jenis-Jenis dan Contoh… Pengertian Kata Bilangan, Jenis-Jenis dan Contoh Kata Bilangan (Numeralia) Lengkap – Kata bilangan atau Numeralia adalah kata yang menyatakan jumlah benda atau urutannya dalam suatu deretan. Ada 2 jenis kata…
- Cara Menyederhanakan Bilangan Pecahan Masih ingtkah Anda dengan cara menentukan pecahan senilai? Pecahan senilai dapat ditentukan dengan cara mengalikan atau membagi pembilang dan penyebutnya dengan bilangan yang sama, kecuali 1 dan 0 (nol). Contoh bilangan…
- Operasi Penjumlahan dan Pengurangan Pecahan Operasi Penjumlahan dan Pengurangan Pecahan dapat dilakukan jika penyebut kedua atau lebih dari pecahan tersebut memiliki nilai yang sama. Penjumlahan dan Pengurangan Pecahan Yang Penyebutnya Sama Misalkan “Budi dan Iwan masing-masing…
- Operasi Perkalian pada Bilangan Bulat Kita ketahui bahwa perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Agar lebih memahami maksud pernyataan tersebut silahkan perhatikan contoh berikut. 3 × 2 = 2 + 2 + 2 = 6 2 × 3…
- Sifat-Sifat Perkalian Pada Bilangan Bulat Perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Misalnya 3 × 2 = 2 + 2 + 2 dan 2 × 3 = 3 + 3. Meskipun hasil akhirnya sama, perkalian…
- Cara Menentukan Kelipatan Suatu Bilangan Bulat Positif Materi kelipatan suatu bilangan bulat positif merupakan materi dasar yang Anda harus kuasai untuk menguasai materi kelipatan persekutuan terkecil (KPK) yang akan kita bahas pada postingan berikutnya. Materi ini sudah…
- Cara Mengerjakan Operasi Hitung Campuran Pada Bilangan Bulat Operasi hitung campuran pada bilangan bulat sering muncul pada soal-soal ujian nasional (UN). Jadi Anda sangat penting mengetahui cara mengerjakan operasi hitung campuran pada bilangan bulat. Contoh hitung campuran bilangan…
- Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian Dalam mempelajari persamaan dan pertidaksamaan linear satu variabel, Anda harus menguasai materi dasar terlebih dahulu agar bisa lanjut ke materi berikutnya. Adapun materi dasar yang dimaksud adalah pengertian pernyataan, pengertian kalimat terbuka,…
- Operasi Perkalian pada Bentuk Aljabar Perlu Anda ingat kembali bahwa pada perkalian bilangan bulat akan berlaku sifat distributif perkalian terhadap penjumlahan, yaitu a(b+c) = (ab)+(ac) dan sifat distributif perkalian terhadap pengurangan, yaitu a(b – c) = (ab) – (a…
- Trik Rahasia Belajar Hitung Cepat Matematika Dengan… Inilah Trik Rahasia Belajar Hitung Cepat Matematika Dengan Mudah dan Menyenangkan Pengalaman pribadi penulis, kalau sudah bertemu mata pelajaran matematika rasanya ingin cepat pulang, hehe.. semoga pembaca semua tidak seperti…
- Cara Menentukan FPB dan KPK Dengan Pohon Faktor Pada dasarnya mencari faktor persekutuan terbesar (FPB) dan kelipatan persekutuan terkecil (KPK) dengan pohon faktor hampir sama seperti mencari FPB dan KPK dengan faktorisasi prima, karena dari pohon faktor ini akan menghasilkan fakorisasi…
- Kelipatan Persekutuan Terkecil (KPK) dari Dua… Mungkin Anda pernah melihat soal seperti berikut ini atau sejenisnya. “Iwan, Seno dan Budi adalah teman sekelas dan memiliki hobi yang sama yaitu sama-sama pecinta permainan bulutangkis. Mereka akan mengikuti…