Untuk menjumlahkan bilangan bulat dapat dilakukan dengan alat bantu yakni dengan garis bilangan. Bagaimana dengan pengurangan pada bilangan bulat? Sama seperti pada penjumlahan pada bilangan bulat, pengurangan pada bilangan bulat juga bisa menggunakan alat bantu berupa garis bilangan. Oke sekarang silahkan simak penjelasaannya di bawah ini.
Kita ketahui bahwa pengurangan dinyatakan sebagai penjumlahan dengan lawan bilangan pengurang. Konsep ini sudah Anda pelajari pada waktu Anda duduk di bangku sekolah dasar. Coba ingat-ingat kembali konsep tersebut.
Oke untuk mengingat kembali konsep tersebut, silahkan bandingkan hasil penjumlahan 4 + (–3) dan pengurangan 4 – 3. Dengan menggunakan bantuan garis bilangan maka untuk menjumlahkan 4 + (–3) dapat dilakukan dengan langkah-langkahnya berikut ini.
=> Gambarlah anak panah dari angka 0 sejauh 4 satuan ke kanan sampai pada angka 4.
=> Gambarlah anak panah tadi dari angka 4 sejauh 3 satuan ke kiri sampai angka 1.
=> Jadi, hasilnya dari 4 + (–3) = 1 dan garis bilangannya akan tampak seperti gambar di bawah ini.
Sedangkan untuk pengurangan 4 – 3 sama seperti langkah-langkahnya di atas yakni.
=> Gambarlah anak panah dari angka 0 sejauh 4 satuan ke kanan sampai pada angka 4.
=> Gambarlah anak panah tadi dari angka 4 sejauh 3 satuan ke kiri sampai angka 1.
=> Jadi, hasilnya dari 4 + (–3) = 1 dan garis bilangannya akan tampak seperti gambar di bawah ini.
Sekarang kita bandingkan hasil penjumlahan –5 + 2 dengan pengurangan –5 – (–2). Dengan cara yang sama seperti cara di atas maka hasil penjumlahan –5 + 2 maka garis bilangannya akan tampak seperti gambar di bawah ini.
Sedangkan hasil pengurangan –5 – (–2), gambar garis bilangannya akan tampak seperti gambar di bawah ini.
Setelah melihat kedua hasil pengurangan dan penjumlahan di atas dengan bantuan garis bilangan maka diperoleh bahwa:
=> 4 – 3 = 4 + (–3) = 1
=> –5 – (–2) = –5 + 2 = –3
Jadi, berdasarkan pemaparan di atas, maka dapat disimpulkan bahwa pada pengurangan bilangan bulat, mengurangi dengan suatu bilangan sama artinya dengan menambah dengan lawan pengurangnya. Secara umum pernyataan tersebut dapat dituliskan bahwa “untuk setiap bilangan bulat a dan b, maka berlaku a – b = a + (–b)”.
Artikel Paling Populer :
- Sifat-Sifat Penjumlahan Bilangan Bulat Untuk menjumlahkan bilangan bulat ada dua cara yang bisa dilakukan yakni menjumlahkan dengan bantuan alat dan menjumlahkan tanpa bantuan. Untuk selengkapnya silahkan baca pada postingan sebelumnya yang berjudul “Operasi penjumlahan…
- Rumus Perhitungan, Penjumlahan, Pengurangan,… Rumus Perhitungan, Penjumlahan, Pengurangan, Pembagian, Perkalian di Excel Dan Contohnya Terlengkap Hal dasar yang harus kita kuasi dalam belajar excel adalah mengetahui operasi perhitungan matematika, seperti operasi hiutng penjumlahan, pengurangan,…
- Perkalian Pecahan dan Contoh Soal Pada perkalian pecahan kita tidak perlu lagi menyamakan penyebut seperti pada penjumlahan dan pengurangan pecahan. Kita hanya mengalikan pembilang dengan pembilang dan penyebut dengan penyebut. Untuk membuktikan hal tersebut silahkan perhatikan uraian berikut.…
- Bilangan Desimal Bilangan Desimal Dalam Matematika, bilangan dapat diklasifikasikan ke dalam berbagai jenis, yaitu bilangan real, bilangan asli, bilangan bulat, bilangan rasional, dan sebagainya. Bilangan desimal ada di antara mereka. Desimal juga merupakan cara…
- Cara Mengubah Pecahan Biasa Menjadi Pecahan Campuran Perlu kita ketahui bahwa bilangan pecahan campuran merupakan bilangan yang terdiri dari bilangan bulat dan bilangan pecahan. Untuk memahami cara mengubah pecahan biasa menjadi pecahan campuran atau dari pecahan campuran menjadi pecahan biasa,…
- Notasi Himpunan, Anggota Himpunan, dan Menyatakan Himpunan Pada postingan sebelumnya sudah dibahas tentang pengertian himpunan. Sekarang kita akan mempelajari bagaimana notasi dan anggota himpunan. Dalam dunia matematika, suatu himpunan dilambangkan dengan huruf kapital, misalnya A, B, C, D,…
- Faktor Persekutuan Terbesar (FPB) Suatu Bilangan Bulat Sebelum membahas tentang faktor pesekutuan terbesar (FPB) dari dua atau lebih bilangan bulat, silahkan simak contoh soal berikut “Ibu Ani akan membuat parcel buah yang berisi tiga jenis buah yakni…
- Bentuk dan Unsur - Unsur Aljabar Tahukah Anda apa pengertian aljabar (algebra)? Menurut Wikipedia, aljabar (algebra) berasal dari Bahasa Arab "al-jabr" yang artinya "hubungan" atau "penyelesaian". Jadi, aljabar merupakan cabang ilmu matematika yang mempelajari hubungan dan penyelesaian…
- Pengertian Bilangan Bulat Masih ingatkah Anda dengan bilangan cacah? Bilangan cacah sudah Anda pelajari pada saat duduk di bangku sekolah dasar. Coba Anda ingat kembali materi tersebut! Adapun bilangan cacah yaitu 0, 1,…
- Gagasan Besar Pecahan Pecahan memiliki pembilang dan penyebut. Penyebut memberi tahu berapa banyak bagian yang sama dari keseluruhan yang dibagi dan pembilang memberi tahu berapa banyak bagian yang ada. Pecahan dapat memiliki arti…
- Pengertian Bilangan Pecahan Dalam kehidupan sehari-hari kita sering melihat benda-benda yang dibagi dengan ukuran yang sama, misalnya sebuah apel yang dibagi menjadi dua bagian yang sama dan sebuah kue tar (kue ulang tahun)…
- Penjumlahan dan Pengurangan Pada Bentuk Aljabar Operasi hitung pada bentuk aljabar sama seperti operasi hitung pada bilangan bulat yang meliputi: penjumlahan, pengurangan, perkalian, pembagian dan perpangkatan. Nah pada postingan ini kami hanya membahas tentang penjumlahan dan…
- Pengertian Kata Bilangan, Jenis-Jenis dan Contoh… Pengertian Kata Bilangan, Jenis-Jenis dan Contoh Kata Bilangan (Numeralia) Lengkap – Kata bilangan atau Numeralia adalah kata yang menyatakan jumlah benda atau urutannya dalam suatu deretan. Ada 2 jenis kata…
- Cara Menentukan Kelipatan Suatu Bilangan Bulat Positif Materi kelipatan suatu bilangan bulat positif merupakan materi dasar yang Anda harus kuasai untuk menguasai materi kelipatan persekutuan terkecil (KPK) yang akan kita bahas pada postingan berikutnya. Materi ini sudah…
- Himpunan Penyelesaian Persamaan Linear Satu Variabel Sebelumnya sudah dibahas bahwa kalimat terbuka yang dihubungkan oleh tanda sama dengan (=) disebut persamaan, sedangkan persamaan dengan satu variabel berpangkat satu atau berderajat satu disebut persamaan linear satu variabel. Bagaimana cara menentukan…
- Operasi Pembagian Pada Pecahan Masih ingatkah Anda dengan operasi pembagian pada bilangan bulat? Kita ketahui bahwa operasi pembagian pada bilangan bulat merupakan invers (kebalikan) dari perkalian. Hal ini juga berlaku pada pembagian bilangan pecahan. Pembagian Pecahan…
- Pengertian Perpangkatan Bilangan Pada waktu duduk di bangku sekolah dasar, Anda sudah mempelajari tentang pengertian kuadrat suatu bilangan. Di tingkat SMP atau MTs Anda kembali mempelajari tentang bilangan berpangkat. Coba Anda ingat-ingat kembali…
- Operasi Perpangkatan Pada Bentuk Aljabar pada postingan kali ini kami akan membahas tentang operasi perpangkatan pada bentuk aljabar. Operasi perpangkatan diartikan sebagai perkalian berulang dengan bilangan yang sama. Jadi, untuk sebarang bilangan bulat a, berlaku: Hal ini…
- Sifat-sifat dan Invers Perkalian Pada Pecahan Sifat-sifat perkalian pada pecahan sama seperti sifat-sifat perkalian pada bulangan bulat. Ada enam sifat-sifat perkalian pada bilangan bulat yakni sifat tertutup, sifat komutatif, sifat asosiatif, sifat distributif perkalian terhadap penjumlahan, sifat distributif…
- Operasi Perkalian pada Bentuk Aljabar Perlu Anda ingat kembali bahwa pada perkalian bilangan bulat akan berlaku sifat distributif perkalian terhadap penjumlahan, yaitu a(b+c) = (ab)+(ac) dan sifat distributif perkalian terhadap pengurangan, yaitu a(b – c) = (ab) – (a…