Perlu Anda ingat kembali bahwa pada perkalian bilangan bulat akan berlaku sifat distributif perkalian terhadap penjumlahan, yaitu a(b+c) = (ab)+(ac) dan sifat distributif perkalian terhadap pengurangan, yaitu a(b – c) = (ab) – (a c), untuk setiap bilangan bulat a, b, dan c. Bagaimana dengan bentuk aljabar, apakah berlaku juga dengan sifat distributif terhadap penjumlahan dan sifat distributif terhadap pengurangan?
Sifat distributif terhadap penjumlahan dan sifat distributif terhadap pengurangan juga akan berlaku pada perkalian bentuk aljabar, yakni:
- Perkalian antara konstanta dengan bentuk aljabar
Perkalian suatu bilangan konstanta k dengan bentuk aljabar suku satu dan suku dua dinyatakan sebagai berikut.
<=> k(ax) = kax
<=> k(ax + b) = kax + kb
Untuk memantapkan pemahaman Anda tentang perkalian antara konstanta dengan bentuk aljabar perhatikan contoh soal di bawah ini.
Contoh Soal 1
Jabarkan bentuk aljabar berikut, kemudian sederhanakanlah.
- 4(p + q)
- 5(ax + by)
- 3(x – 2) + 6(7x + 1)
- –8(2x – y + 3z)
Penyelesaian:
- 4(p + q) = 4p + 4q
- 5(ax + by) = 5ax + 5by
- 3(x – 2) + 6(7x + 1)
= 3x – 6 + 42x + 6
= (3 + 42)x – 6 + 6
= 45x
- –8(2x – y + 3z) = –16x + 8y – 24z
- Perkalian antara dua bentuk aljabar
Sebagaimana perkalian suatu konstanta dengan bentuk aljabar seperti yang sudah dijelaskan pada postingan di atas, untuk menentukan hasil kali antara dua bentuk aljabar kita dapat memanfaatkan sifat distributif perkalian terhadap penjumlahan dan sifat distributif perkalian terhadap pengurangan.
Selain dengan memanfaatkan sifat distributif, untuk menentukan hasil kali antara dua bentuk aljabar, dapat menggunakan cara sebagai berikut. Perhatikan perkalian antara bentuk aljabar suku dua dengan suku dua berikut.
Selain dengan cara skema seperti di atas, untuk mengalikan bentuk aljabar suku dua dengan suku dua dapat digunakan sifat distributif seperti uraian berikut.
(nx+b)(mx+d) = nx (mx+d)+b(mx+d)
= nmx2+ndx+mbx+bd
=nmx2+(nd+mb)x+bd
Adapun pada perkalian bentuk aljabar suku dua dengan suku tiga berlaku sebagai berikut.
= ax.cx2 + ax.dx + ax.e + b.cx2 + b.dx + b.e
= acx3 + adx2 + aex + bcx2 + bdx + be
= acx3 + (ad + bc)x2 + (ae + bd)x + be
Selain dengan cara skema seperti di atas, untuk mengalikan bentuk aljabar suku dua dengan suku dua dapat digunakan sifat distributif seperti uraian berikut.
(ax + b) (cx2 + dx + e) = ax(cx2 + dx + e)+ b(cx2 + dx + e)
= acx3 + adx2 + aex + bcx2 + bdx + be
= acx3 + (ad + bc)x2 + (ae + bd)x + be
Untuk memantapkan pemahaman Anda tentang perkalian bentuk aljabar dengan bentuk aljabar silahkan perhatikan contoh soal di bawah ini.
Contoh Soal 2
Tentukan hasil perkalian bentuk aljabar berikut dalam bentuk jumlah atau selisih.
- (2x + 3)(3x – 2)
- (–4a + b)(4a + 2b)
- (2x – 1)(x2 – 2x + 4)
- (x + 2)(x – 2)
Demikianlah postingan kali ini tentang operasi perkalian bentuk aljabar.
Artikel Paling Populer :
- Menentukan Nilai Bentuk Aljabar Dengan Substitusi Sebelumnya kami sudah membahas tentang operasi hitung bentuk aljabar yang meliputi: Operasi penjumlahan dan pengurangan Operasi perkalian Operasi pembagian Operasi perpangkatan Sekarang pada postingan ini Mafia Online akan membahas cara…
- Operasi Penjumlahan pada Bilangan Bulat Untuk menjumlahkan bilangan bulat ada dua cara yang bisa Anda gunakan yakni penjumlahan bilangan bulat dengan alat bantu yakni dengan garis bilangan dan penjumlahan bilangan bulat tanpa alat bantu. Penjumlahan dengan alat…
- Sifat-Sifat Perkalian Pada Bilangan Bulat Perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Misalnya 3 × 2 = 2 + 2 + 2 dan 2 × 3 = 3 + 3. Meskipun hasil akhirnya sama, perkalian…
- Pengertian, Rumus & Contoh Soal Barisan Dan Deret… Pengertian, Rumus & Contoh Soal Barisan Dan Deret Geometri Beserta Penjelasan Lengkap – Terdapat dua jenis Barisan dan Deret di dalam matematika yaitu Barisan dan Deret Aritmatika & Barisan dan…
- Cara Mengerjakan Operasi Hitung Campuran Pada Bilangan Bulat Operasi hitung campuran pada bilangan bulat sering muncul pada soal-soal ujian nasional (UN). Jadi Anda sangat penting mengetahui cara mengerjakan operasi hitung campuran pada bilangan bulat. Contoh hitung campuran bilangan…
- Cara Menentukan Faktor Suatu Bilangan Bulat Cara menentukan faktor suatu bilangan bulat sangat penting dan Anda harus menguasainya karena materi ini merupakan materi dasar untuk menguasai konsep faktor persekutuan terbesar (FPB) yang nantinya akan dibahas setelah…
- Menentukan FPB Dengan Cara Faktorisasi Prima kita dapat menentukan FPB dari dua bilangan atau lebih dengan terlebih dahulu menentukan faktorisasi prima masing-masing bilangan itu. Di mana faktorisasi prima merupakan perkalian semua faktor-faktor prima dari suatu bilangan.…
- Rumus Barisan Dan Deret Aritmatika Beserta Contoh… Rumus Barisan Dan Deret Aritmatika Beserta Contoh Soal Dan Penyelesaian Lengkap – Aritmatika atau Aritmetika berasal dari bahasa yunani αριθμός yang berarti angka yang dulu biasa disebut dengan Ilmu Hitung yaitu cabang tertua atau pendahulu…
- Pengertian Perpangkatan Bilangan Pada waktu duduk di bangku sekolah dasar, Anda sudah mempelajari tentang pengertian kuadrat suatu bilangan. Di tingkat SMP atau MTs Anda kembali mempelajari tentang bilangan berpangkat. Coba Anda ingat-ingat kembali…
- Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam… Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam Matematika Perhatikan masalah yang di hadapi seorang peneliti sedang merancangsebuah wadah berbentuk balok dari bahan alumunium. Wadah tersebut harus mampu menampung…
- Matriks – Operasi Matriks, Rumus, Contoh Soal… Matriks – Operasi Matriks, Rumus, Contoh Soal Matriks dan Jawabannya Lengkap – Dalam matematika, matriks adalah susunan bilangan, simbol, atau ekspresi, yang disusun dalam baris dan kolom sehingga membentuk suatu bangun…
- Pembahasan Lengkap Aturan Cosinus Segitiga… Pembahasan Lengkap Aturan Cosinus Segitiga Trigonometri Dalam Ilmu Matematika – Teorema Pythagoras merupakan suatu rumus matematika yang sangat penting dalam geometri. Dengan menggunakan teorema phytagoras, kita bisa menghitung jarak antara dua…
- Bentuk dan Unsur - Unsur Aljabar Tahukah Anda apa pengertian aljabar (algebra)? Menurut Wikipedia, aljabar (algebra) berasal dari Bahasa Arab "al-jabr" yang artinya "hubungan" atau "penyelesaian". Jadi, aljabar merupakan cabang ilmu matematika yang mempelajari hubungan dan penyelesaian…
- Operasi Perpangkatan Pada Bentuk Aljabar pada postingan kali ini kami akan membahas tentang operasi perpangkatan pada bentuk aljabar. Operasi perpangkatan diartikan sebagai perkalian berulang dengan bilangan yang sama. Jadi, untuk sebarang bilangan bulat a, berlaku: Hal ini…
- Sifat-Sifat Pembagian Pada Bilangan Bulat Untuk memahami sifat-sifat operasi pembagian pada bilangan bulat, Anda harus mengingat kembali sifat-sifat operasi perkalian pada bilangan bulat. Ada enam sifat-sifat perkalian pada bilangan bulat yang sudah dibahas pada postingan sebelumnya yakni…
- Sifat-Sifat Penjumlahan Bilangan Bulat Untuk menjumlahkan bilangan bulat ada dua cara yang bisa dilakukan yakni menjumlahkan dengan bantuan alat dan menjumlahkan tanpa bantuan. Untuk selengkapnya silahkan baca pada postingan sebelumnya yang berjudul “Operasi penjumlahan…
- Operasi Pembagian pada Bilangan Bulat Untuk memahami operasi pembagian pada bilangan bulat, Anda harus paham dengan konsep operasi perkalian pada bilangan bulat karena pembagian merupakan operasi kebalikan dari perkalian. Untuk lebih mudah memahami pernyataan bahwa operasi kebalikan dari…
- Sifat-Sifat Operasi Himpunan Sifat-sifat irisan dan gabungan himpunan Kalian telah mempelajari bahwa anggota irisan dua himpunan adalah anggota persekutuan himpunan tersebut. Jika A = {1, 2, 3, 4}, B = {3, 4, 5}…
- Sifat-sifat dan Invers Perkalian Pada Pecahan Sifat-sifat perkalian pada pecahan sama seperti sifat-sifat perkalian pada bulangan bulat. Ada enam sifat-sifat perkalian pada bilangan bulat yakni sifat tertutup, sifat komutatif, sifat asosiatif, sifat distributif perkalian terhadap penjumlahan, sifat distributif…
- Operasi Pengurangan pada Bilangan Bulat Untuk menjumlahkan bilangan bulat dapat dilakukan dengan alat bantu yakni dengan garis bilangan. Bagaimana dengan pengurangan pada bilangan bulat? Sama seperti pada penjumlahan pada bilangan bulat, pengurangan pada bilangan bulat juga bisa menggunakan…