Untuk menentukan hasil bagi dua bentuk aljabar dapat dilakukan dengan cara menentukan terlebih dahulu faktor sekutu masing-masing bentuk aljabar tersebut, kemudian lakukanlah pembagian pada pembilang dan penyebutnya.
Untuk memantapkan pemahaman Anda tentang cara menentukan operasi pembagian pada bentuk aljabar, silahkan perhatikan contoh soal di bawah ini.
Contoh soal 1
Sederhanakanlah pembagian bentuk aljabar berikut.
- 3xy : 2y
- 6a3b2: 3a2b
- x3y : (x2y2: xy)
- (24p2q + 18pq2) : 3pq
Penyelesaian:
- Faktor sekutu dari 3xy dan 2y adalah y, maka:
<=> 3xy : 2y = 3xy/2y
<=> 3xy : 2y = 3xy/2y
<=> 3xy : 2y = 3x/2
- Faktor sekutu dari 6a3b2dan 3a2b adalah 3a2b, maka:
<=> 6a3b2 : 3a2b = 6a3b2/3a2b
<=> 6a3b2 : 3a2b = (2ab)(3a2b)/3a2b
<=> 6a3b2 : 3a2b = (2ab)
- Kerjakan terlebih dari yang ada di dalam kurung. Faktor sekutu dari x2y2dan xy adalah xy, maka:
<=> x3y : (x2y2 : xy) = x3y : (x2y2/xy)
<=> x3y : (x2y2 : xy) = x3y : (xy.xy/xy)
<=> x3y : (x2y2 : xy) = x3y : xy
Faktor sekutu dari x3y dan xy adalah xy, maka:
<=> x3y : (x2y2 : xy) = x3y : xy
<=> x3y : (x2y2 : xy) = x2.xy : xy
<=> x3y : (x2y2 : xy) = x2
- Faktor sekutu dari 24p2q, 18pq2, dan 3pq adalah 3pq, maka:
<=> (24p2q + 18pq2) : 3pq = 6pq(4p + 3q) : 3pq
<=> (24p2q + 18pq2) : 3pq = 2.3pq(4p + 3q) : 3pq
<=> (24p2q + 18pq2) : 3pq = 2(4p + 3q)
Contoh Soal 2
Sederhanakan bentuk aljabar berikut.
- 16p2: 4p
- 6a6b2: a3b
- 3x2y5: x2y2: xy2
- 15p4q5r3: (6p2qr3: 2pqr)
- (2a2bc2+ 8a3b2c3) : 2abc
- (p3qr2+ p2q2r3– p5q3r2) : p2qr2
Penyelesaian:
- Faktor sekutu dari 16p2dan 4p adalah 4p, maka:
<=> 16p2 : 4p = 4p.4p/4p
<=> 16p2 : 4p = 4p.4p/4p
<=> 16p2 : 4p = 4p
- Faktor sekutu dari 6a6b2dan a3b adalah a3b, maka:
<=> 6a6b2 : a3b = 6a3b.a3b/a3b
<=> 6a6b2 : a3b = 6a3b.a3b/a3b
<=> 6a6b2 : a3b = 6a3b
- 3x2y5: x2y2: xy2
<=> 3x2y5 : x2y2 : xy2 = 3x2y5 : (x.xy2 / xy2)
<=> 3x2y5 : x2y2 : xy2 = x.3xy5 / x
<=> 3x2y5 : x2y2 : xy2 = 3xy5
- 15p4q5r3: (6p2qr3: 2pqr)
= 15p4q5r3 : (3pr2.2pqr / 2pqr)
= 15p4q5r3 /3pr2
= 5p3q5r.3pr2 /3pr2
= 5p3q5r
- (2a2bc2+ 8a3b2c3) : 2abc
= 2abc (ac + 4a2bc2)/2abc
= (ac + 4a2bc2)
- (p3qr2+ p2q2r3– p5q3r2) : p2qr2
= (p2qr2)(p + qr – p3q2)/p2qr2
= (p + qr – p3q2)
Demikianlah postingan kali ini tentang operasi pembagian bentuk aljabar.
Artikel Paling Populer :
- Sifat-Sifat Pembagian Pada Bilangan Bulat Untuk memahami sifat-sifat operasi pembagian pada bilangan bulat, Anda harus mengingat kembali sifat-sifat operasi perkalian pada bilangan bulat. Ada enam sifat-sifat perkalian pada bilangan bulat yang sudah dibahas pada postingan sebelumnya yakni…
- Pengertian dan Menentukan Irisan dua himpunan Pengertian irisan dua himpunan Cobalah ingat kembali tentang anggota persekutuan dari dua himpunan. Misalkan: A = {1, 3, 5, 7 , 9} B = {2, 3, 5, 7 } Anggota himpunan A dan B adalah…
- Menentukan FPB Dengan Cara Faktorisasi Prima kita dapat menentukan FPB dari dua bilangan atau lebih dengan terlebih dahulu menentukan faktorisasi prima masing-masing bilangan itu. Di mana faktorisasi prima merupakan perkalian semua faktor-faktor prima dari suatu bilangan.…
- Perkalian Pecahan dan Contoh Soal Pada perkalian pecahan kita tidak perlu lagi menyamakan penyebut seperti pada penjumlahan dan pengurangan pecahan. Kita hanya mengalikan pembilang dengan pembilang dan penyebut dengan penyebut. Untuk membuktikan hal tersebut silahkan perhatikan uraian berikut.…
- Penerapan Operasi Hitung Bilangan Bulat operasi hitung pada bilangan bulat yang meliputi operasi penjumlahan, operasi pengurangan, operasi perkalian dan oprasi pembagian. Semua operasi tersebut sekarang kita terapkan pada contoh soal untuk menyelesaikan masalah yang berkaitan dengan kehidupan sehari-hari. Berikut contoh…
- Himpunan Penyelesaian Persamaan Linear Satu Variabel Sebelumnya sudah dibahas bahwa kalimat terbuka yang dihubungkan oleh tanda sama dengan (=) disebut persamaan, sedangkan persamaan dengan satu variabel berpangkat satu atau berderajat satu disebut persamaan linear satu variabel. Bagaimana cara menentukan…
- Kelipatan Persekutuan Terkecil (KPK) dari Dua… Mungkin Anda pernah melihat soal seperti berikut ini atau sejenisnya. “Iwan, Seno dan Budi adalah teman sekelas dan memiliki hobi yang sama yaitu sama-sama pecinta permainan bulutangkis. Mereka akan mengikuti…
- Sifat-Sifat Perkalian Pada Bilangan Bulat Perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Misalnya 3 × 2 = 2 + 2 + 2 dan 2 × 3 = 3 + 3. Meskipun hasil akhirnya sama, perkalian…
- Bilangan Desimal Bilangan Desimal Dalam Matematika, bilangan dapat diklasifikasikan ke dalam berbagai jenis, yaitu bilangan real, bilangan asli, bilangan bulat, bilangan rasional, dan sebagainya. Bilangan desimal ada di antara mereka. Desimal juga merupakan cara…
- Cara Mengerjakan Operasi Hitung Campuran Pada Bilangan Bulat Operasi hitung campuran pada bilangan bulat sering muncul pada soal-soal ujian nasional (UN). Jadi Anda sangat penting mengetahui cara mengerjakan operasi hitung campuran pada bilangan bulat. Contoh hitung campuran bilangan…
- Faktor Persekutuan Terbesar (FPB) Suatu Bilangan Bulat Sebelum membahas tentang faktor pesekutuan terbesar (FPB) dari dua atau lebih bilangan bulat, silahkan simak contoh soal berikut “Ibu Ani akan membuat parcel buah yang berisi tiga jenis buah yakni…
- Menentukan KPK Dengan Cara Faktorisasi Prima Cara tersebut boleh dibilang sangat ribet karena harus mencari kelipatan dari masing-masing bilangan. Untuk mengatasi hal tersebut ada cara yang lebih mudah yakni dengan menggunakan faktorisasi prima. Faktorisasi prima merupakan…
- Operasi Pembagian pada Bilangan Bulat Untuk memahami operasi pembagian pada bilangan bulat, Anda harus paham dengan konsep operasi perkalian pada bilangan bulat karena pembagian merupakan operasi kebalikan dari perkalian. Untuk lebih mudah memahami pernyataan bahwa operasi kebalikan dari…
- Cara Mengubah Bentuk Pecahan ke Bentuk Permil Cara Mengubah Bentuk Pecahan ke Bentuk Permil Pecahan dalam bentuk perseribu disebut permil atau ditulis “‰”. Bentuk pecahan 123/1.000 dikatakan 123 permil dan ditulis 123‰. Dalam mengubah bentuk pecahan ke…
- Cara Menyatakan Hubungan Antara Dua Pecahan cara menentukan pecahan senilai. Dengan menggunakan konsep pecahan senilai kita akan bisa menyatakan hubungan antara dua pecahan. Cara menyatakan hubungan antara dua pecahan hampir sama seperti menyatakan hubungan antara dua bilangan…
- Pengertian dan Cara Menentukan Pecahan Senilai Sebelumnya sudah membahas tentang pengertian bilangan pecahan dan contohnya dalam kehidupan sehari-hari. Sedangkan, postingan kali ini akan membahas tentang pengertian pecahan senilai dan cara menentukan bahwa dua pecahan dikatakan senailai. Untuk lebih…
- Bilangan Bulat, Sifat-Sifatnya dan Operasinya Bilangan Bulat dan Sifat-sifatnya Dalam Matematika, bilangan bulat adalah kumpulan bilangan cacah dan bilangan negatif. Mirip dengan bilangan cacah, bagian pecahan tidak termasuk di dalamnya. Jadi, kita dapat mengatakan, bilangan…
- Selisih (Difference) dan Komplemen Suatu Himpunan Pada postingan sebelumnya Kami sudah membahas tentang operasi himpunan yakni irisan himpunan dan gabungan himpunan. Pada postingan kali ini masih mengulas tentang operasi himpunan yakni selisih dan komplemen dua himpunan. Apa itu selisih…
- Cara Mengubah Bentuk Pecahan ke Bentuk Persen Kita ketahui bahwa pecahan merupakan bilangan yang dinyatakan dengan a/b, di mana a merupakan pembilang dan b merupakan penyebut, sedangkan persen dapat diartikan sebagai perseratus yang ditulis dengan notasi %.…
- Pengertian Bilangan Pecahan dan Jenis-Jenis Bilangan… Pengertian Bilangan Pecahan dan Jenis-Jenis Bilangan Pecahan Serta Contohnya Kita dapat mengartikan secara singkat bahwa bilangan pecah dapat diartikan sebagai sebuah bilangan yang memiliki pembilang dan juga penyebut. Sedangkan yang…