pada postingan kali ini kami akan membahas tentang operasi perpangkatan pada bentuk aljabar. Operasi perpangkatan diartikan sebagai perkalian berulang dengan bilangan yang sama. Jadi, untuk sebarang bilangan bulat a, berlaku:
Hal ini juga berlaku pada perpangkatan bentuk aljabar, untuk bentuk aljabar (ax + by), maka akan berlaku:
(ax + by)n = (ax + by)(ax + by)(ax + by) . . . (ax + by)
Dimana (ax + by) sebanyak n.
Untuk memantapkan pemahaman Anda tentang cara menentukan operasi perpangkatan pada bentuk aljabar, silahkan perhatikan contoh soal di bawah ini.
Contoh soal 1
Tentukan hasil perpangkatan bentuk aljabar berikut.
- (2a)2
- (3xy)3
- (–2ab)4
- (4a2b2)2
- –3(x2y)3
- –(2pq)4
- ½(2xy)2
- a(ab2)3
Penyelesaian:
Tentukan hasil perpangkatan bentuk aljabar berikut.
- (2a)2
<=> (2a)2 = (2a)(2a)
<=> (2a)2 = 4a2
- (3xy)3
<=> (3xy)3 = (3xy)(3xy)(3xy)
<=> (3xy)3 = 9x3y3
- (–2ab)4
<=> (–2ab)4 = (–2ab)(–2ab)(–2ab)(–2ab)
<=> (–2ab)4 = 8a4b4
- (4a2b2)2
<=> (4a2b2)2 = (4a2b2)(4a2b2)
<=> (4a2b2)2 = 16a4b4
- –3(x2y)3
<=> –3(x2y)3 = –3(x2y)(x2y)(x2y)
<=> –3(x2y)3 = –3(x6y3
- –(2pq)4
<=> –(2pq)4 = –(2pq)(2pq)(2pq)(2pq)
<=> –(2pq)4 = –16p4q4
- ½(2xy)2
<=> ½(2xy)2 = ½(2xy)(2xy)
<=> ½(2xy)2 = ½.4x2y2
<=> ½(2xy)2 = 2x2y2
- a(ab2)3
<=> a(ab2)3 = a(ab2)(ab2)(ab2)
<=> a(ab2)3 = a(a3b6)
<=> a(ab2)3 = a4b6
Nah contoh di atas merupakan contoh soal untuk perpangkatan bentuk aljabar suku satu, bagaimana perpangkatan bentuk aljabar suku dua?
Untuk perpangkatan bentuk aljabar suku dua kita dapat gunakan pola segitiga pascal, seperti gambar di bawah ini.
Bagaimana menggunakan segitiga pascal di atas untuk menjabarkan perpangkatan bentuk aljabar yang bersuku dua? Silhkan simak contoh penjabarannya berikut ini. Kita misalkan (a + b)3, berdasarkan gambar di atas koefesien untuk (a + b)3 adalah 1 3 3 1, maka penjabarannya yakni:
(a + b)3 = 1.a3 + 3.a2b + 3.ab2 + 1.b3
(a + b)3 = a3 + 3a2b + 3ab2 + b3
Sekarang coba perhatika jumlah pangkat tiap sukunya! Ternyata jumlah pangkatnya sama dengan tiga. Masih bingung? Oke, Mafia Online berikan satu contoh penjabaran untuk bentuk aljabar (a + b)6, berdasarkan gambar di atas koefesien untuk (a + b)6 adalah 1 6 15 20 15 6 1, maka penjabarannya yakni:
(a + b)6
= 1.a6 + 6.a5b + 15.a4b2 + 20.a3b3 + 15.a2b4 + 6.ab5 + 1.b5
= a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b5
Sekarang coba perhatika jumlah pangkat tiap sukunya! Ternyata jumlah pangkatnya sama dengan enam.
Untuk memantapkan pemahaman Anda tentang operasi perpangkatan bentuk aljabar suku dua dengan menggunakan segitiga pascal, silahkan simak contoh soal di bawah ini.
Contoh Soal 2
Jabarkan perpangkatan bentuk aljabar berikut.
- 2(3p + q)4
- 5(3a + 2)4
Penyelesaian:
- 2(3p + q)4, koefesien untuk bentuk aljabar suku dua pangkat empat yakni 1 4 6 4 1, maka:
<=> 2(1.(3p)4 + 4(3p)3q + 6(3p)2q2 + 4(3p)q3 + 1.q4)
<=> 2(34p4 + 4(33p3q) + 6(32p2q2) + 4(3pq3) + q4)
<=> 2(81p4 + 4(27p3q) + 6(9p2q2) + 4(3pq3) + q4)
<=> 162p4 + 108p3q + 54p2q2 + 12pq3 + q4
- 5(3a + 2)4, koefesien untuk bentuk aljabar suku dua pangkat empat yakni 1 4 6 4 1, maka:
<=> 5(1.(3a)4 + 4(3a)3.2 + 6(3a)222 + 4(3p)23 + 1.24)
<=> 5(34a4 + 4.33a3.2 + 6.32a2.22 + 4.3p23 + 24)
<=> 5(81a4 + 4.27a3.2 + 6.9a2.4 + 4.3p.8 + 16)
<=> 5(81a4 + 216a3 + 216a2 + 96p + 16)
<=> 405a4 + 1080a3 + 1080a2 + 480p + 80
Contoh Soal 2
Tentukan koefisien (a + b)n pada suku yang diberikan.
- Suku ke-2 pada (2a – 3)4.
- Suku ke-3 pada (x + 2y)3.
- Suku ke-4 pada (a – 3b)4.
- Suku ke-5 pada (2x + 3)5.
Penyelesaian:
- Suku ke-2 pada (2a – 3)4. Misalkan x = 2a dan y = – 3,(2a – 3)4 akan menjadi (x + y)4 maka suku ke-2 yakni:
<=> 4.x3y = 4.(2a)3(–3)
<=> 4.x3y = –12.8a3
<=> 4.x3y = –96a3
Jadi koefisien suku ke-2 pada (2a – 3)4 adalah –96.
- Suku ke-3 pada (x + 2y)3. Misalkan a = x dan b = 2y,(x + 2y)3 akan menjadi (a + b)3 maka suku ke-2 yakni:
<=> 3.ab2 = 3.x(2y)2
<=> 3.ab2 = 12xy2
Jadi koefisien suku ke-3 pada (x + 2y)3 adalah 12.
- Suku ke-4 pada (a – 3b)4. Misalkan x = a dan y = – 3b,(a – 3b)4 akan menjadi (x + y)4 maka suku ke-4 yakni:
<=> 4.xy3 = 4.(a)(–3b)3
<=> 4.xy3 = 4.(a)(–33b3)
<=> 4.xy3 = –108ab3
Jadi koefisien suku ke-4 pada (a – 3b)4 adalah –108.
- Suku ke-5 pada (2x + 3)5. Misalkan a = 2x dan b = 3,(2x + 3)5 akan menjadi (a + b)5 maka suku ke-5 yakni:
<=> 5.ab4 = 5.(2x)(3)4
<=> 5.ab4 = 810x
Jadi koefisien suku ke-5 pada (2x + 3)5 adalah 810.
Demikianlah postingan kali ini tentang operasi perpangkatan bentuk aljabar.
Artikel Paling Populer :
- Cara Mengerjakan Operasi Hitung Campuran Pada Bilangan Bulat Operasi hitung campuran pada bilangan bulat sering muncul pada soal-soal ujian nasional (UN). Jadi Anda sangat penting mengetahui cara mengerjakan operasi hitung campuran pada bilangan bulat. Contoh hitung campuran bilangan…
- Penjumlahan dan Pengurangan Pada Bentuk Aljabar Operasi hitung pada bentuk aljabar sama seperti operasi hitung pada bilangan bulat yang meliputi: penjumlahan, pengurangan, perkalian, pembagian dan perpangkatan. Nah pada postingan ini kami hanya membahas tentang penjumlahan dan…
- Menaksir Hasil Perkalian dan Pembagian Bilangan Bulat Mungkin Anda pernah berbelanja di supermarket. Terkadang harga yang ditawarkan tidak selalu bulat, misalnya harga selusin buku tulis sebesar Rp 18.280,00. Jika kamu membeli dua lusin buku tulis dan kamu…
- Perbandingan Segmen Garis Pada dasarnya materi perbandingan segmen garis hampir sama dengan perbandingan senilai atau seharga yang sudah diulas pada Materi matematika kelas VII Semester Ganjil pada postingan yang berjudul Cara Menghitung Perbandingan Seharga (senilai). Sebuah…
- Pengertian Bilangan Bulat Masih ingatkah Anda dengan bilangan cacah? Bilangan cacah sudah Anda pelajari pada saat duduk di bangku sekolah dasar. Coba Anda ingat kembali materi tersebut! Adapun bilangan cacah yaitu 0, 1,…
- Sifat-Sifat Pembagian Pada Bilangan Bulat Untuk memahami sifat-sifat operasi pembagian pada bilangan bulat, Anda harus mengingat kembali sifat-sifat operasi perkalian pada bilangan bulat. Ada enam sifat-sifat perkalian pada bilangan bulat yang sudah dibahas pada postingan sebelumnya yakni…
- Pengertian, Rumus, Dan Contoh Perkalian Pecahan… Pengertian, Rumus, Dan Contoh Perkalian Pecahan Serta Pemahamannya Terlengkap – Operasi perkalian merupakan salah satu operasi matematika dasar yang harus dikuasai. Nah, kali ini kita akan membahas tentang perkalian bilangan pecahan.…
- Selisih (Difference) dan Komplemen Suatu Himpunan Pada postingan sebelumnya Kami sudah membahas tentang operasi himpunan yakni irisan himpunan dan gabungan himpunan. Pada postingan kali ini masih mengulas tentang operasi himpunan yakni selisih dan komplemen dua himpunan. Apa itu selisih…
- Bagaimana Cara Menentukan Letak Pecahan pada Garis Bilangan Masih ingatkah dengan cara menentukan letak bilangan bulat pada garis bilangan? Untuk mengingatkan kembali, berikut contoh letak bilangan bulat pada garis bilangan. Untuk menentukan letak pecahan pada garis bilangan, caranya hampir sama…
- Sifat-Sifat Bilangan Berpangkat Dalam postingan ini, masih dalam pembahsan perpangkatan yakni sifat-sifat bilangan berpangkat. Apa saja sifat-sifat bilangan berpangkat? Sifat perkalian bilangan berpangkat Pada perkalian bilangan berpangkat akan berlaku sifat sebagai berikut: pm × pn =…
- Bilangan Bulat, Sifat-Sifatnya dan Operasinya Bilangan Bulat dan Sifat-sifatnya Dalam Matematika, bilangan bulat adalah kumpulan bilangan cacah dan bilangan negatif. Mirip dengan bilangan cacah, bagian pecahan tidak termasuk di dalamnya. Jadi, kita dapat mengatakan, bilangan…
- Fungsi Komposisi, Aljabar Fungsi Dan Komposisi… Pengertian, Sifat Fungsi Komposisi, Aljabar Fungsi Dan Komposisi Fungsi Matematika Disertai Rumus Soal Sebuah produk massal biasanya dibuat melalui beberapa proses. Proses-proses tersebut ditangani oleh mesin-mesin yang berbeda. Urutan pengerjaan produk…
- Operasi Pembagian pada Bilangan Bulat Untuk memahami operasi pembagian pada bilangan bulat, Anda harus paham dengan konsep operasi perkalian pada bilangan bulat karena pembagian merupakan operasi kebalikan dari perkalian. Untuk lebih mudah memahami pernyataan bahwa operasi kebalikan dari…
- Cara Mengkonversi Satuan Panjang Mungkin Anda pernah melihat tanda atau patok seperti gambar di bawah ini di pinggir jalan. Tanda di atas maksudnya jarak kota Jakarta dari patok tersebut (kota Bogor) adalah 59 km.…
- Matriks – Operasi Matriks, Rumus, Contoh Soal… Matriks – Operasi Matriks, Rumus, Contoh Soal Matriks dan Jawabannya Lengkap – Dalam matematika, matriks adalah susunan bilangan, simbol, atau ekspresi, yang disusun dalam baris dan kolom sehingga membentuk suatu bangun…
- Operasi Perkalian pada Bilangan Bulat Kita ketahui bahwa perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Agar lebih memahami maksud pernyataan tersebut silahkan perhatikan contoh berikut. 3 × 2 = 2 + 2 + 2 = 6 2 × 3…
- Cara Mengubah Pecahan Biasa Menjadi Pecahan Campuran Perlu kita ketahui bahwa bilangan pecahan campuran merupakan bilangan yang terdiri dari bilangan bulat dan bilangan pecahan. Untuk memahami cara mengubah pecahan biasa menjadi pecahan campuran atau dari pecahan campuran menjadi pecahan biasa,…
- Cara Mengubah Bentuk Pecahan ke Bentuk Desimal Cara mengubah bentuk pecahan ke bentuk desimal sangat penting diketahui karena mengubah pecahan ke bentuk desimal merupakan konsep dasar dalam mempelajari matematika bahkan dari tingkat SD sampai perguruan tinggi konsep ini…
- Penyelesaian Persamaan Linear Satu Variabel Bentuk Pecahan Dalam menyelesaikan persamaan linear satu variabel (PLSV) yang berbentuk pecahan caranya hampir sama seperti mengerjakan PLSV yang bentuknya bukan pecahan yang sudah dibahas pada postingan sebelumnya dan tetnunya cara tersebut hampir sama…
- Cara Mengubah Bentuk Pecahan ke Bentuk Permil Cara Mengubah Bentuk Pecahan ke Bentuk Permil Pecahan dalam bentuk perseribu disebut permil atau ditulis “‰”. Bentuk pecahan 123/1.000 dikatakan 123 permil dan ditulis 123‰. Dalam mengubah bentuk pecahan ke…