Kita ketahui bahwa perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Agar lebih memahami maksud pernyataan tersebut silahkan perhatikan contoh berikut.
3 × 2 = 2 + 2 + 2 = 6
2 × 3 = 3 + 3 = 6
Meskipun hasil akhirnya sama, perkalian 3 × 2 dan 2 × 3 memiliki arti yang berbeda, di mana 3 × 2 artinya tiga kali duanya, sedangkan 2 × 3 artinya dua kali tiganya. Secara umum, pernyataan tersebut dapat dituliskan bahwa “Jika n adalah sebarang bilangan bulat positif maka: n × a = a + a + a . . . + a, di mana n merupakan banyaknya suku a”
Penerapan dalam kehidupan sehari-hari tentang konsep perkalian yakni pada saat kita berobat ke klinik, puskesmas atau rumah sakit. Misalnya dokter menulis 3 x 1 pada kotak sirup, itu artinya supaya pasien meminum sirup tersebut satu sendok takar sesuai anjuran dokter dalam sehari sebanyak tiga kali (pagi, siang, dan malam sesudah makan). Akan berbeda maksudnya jika ditulis 1 x 3, itu berati pasien meminum obat tersebut tiga sendok takar sesuai anjuran dokter dalam sehari hanya sekali (bisa pagi, siang atau malam).
Perkalian Bilangan Bulat Positif dan Negatif
Untuk mengetahui operasi perkalian bilangan bulat positif dan negatif, silahkan perhatikanlah contoh-contoh berikut.
- 2×(–6) = –12
- 3×(–6) = –18
- 4×(–6) = –24
- 5×(–6) = –30
- 6×(–6) = –36
Berdasarkan contoh-contoh di atas dapat disimpulkan bahwa hasil kali bilangan bulat positif dengan bilangan bulat negatif adalah bilangan bulat negatif. Di mana Untuk setiap bilangan bulat a dan b selalu berlaku a × (– b) = – (a × b).
Perkalian Dua Bilangan Bulat Negatif
Untuk mengetahui operasi perkalian dua bilangan bulat negatif, silahkan perhatikanlah contoh-contoh berikut.
- 2×(–6) = –12
- 1×(–6) = –6
- 0×(–6) = 0
- –1×(–6) = 6
- –2×(–6) = 12
Berdasarkan contoh soal d dan e di atas, maka dapat disimpulkan bahwa hasil kali dua bilangan bulat negatif adalah bilangan bulat positif. Di mana untuk setiap bilangan bulat a dan b selalu berlaku (– a) × (– b) = (a × b).
Perkalian Bilangan Bulat dengan Nol (0)
Untuk mengetahui operasi perkalian bilangan bulat positif dengan nol (0), silahkan perhatikanlah contoh-contoh berikut.
- 6×0 = 0
- –6×0 = 0
- 0×6 = 0
Berdasarkan contoh-contoh di atas dapat disimpulkan bahwa untuk semua bilangan apabila dikalikan dengan nol (0) hasilnya adalah nol.
Unsur Identitas pada Perkalian
Sekarang perhatikan contoh soal di bawah ini.
- 10×1 = 10
- 5×1 = 5
- –5×1 = –5
- –3×1 = –3
Berdasarkan contoh soal di atas maka dapat ditarik kesimpulan bahwa semua bilangan bulat bila dikalikan dengan 1, akan menghasilkan bilangan itu sendiri. Dalam hal ini 1 disebut unsur identitas pada perkalian. Jadi, untuk setiap bilangan bulat a selalu berlaku a × 1 = 1 × a = a.
Artikel Paling Populer :
- Operasi Perpangkatan Pada Bentuk Aljabar pada postingan kali ini kami akan membahas tentang operasi perpangkatan pada bentuk aljabar. Operasi perpangkatan diartikan sebagai perkalian berulang dengan bilangan yang sama. Jadi, untuk sebarang bilangan bulat a, berlaku: Hal ini…
- Cara Menyederhanakan Bilangan Pecahan Masih ingtkah Anda dengan cara menentukan pecahan senilai? Pecahan senilai dapat ditentukan dengan cara mengalikan atau membagi pembilang dan penyebutnya dengan bilangan yang sama, kecuali 1 dan 0 (nol). Contoh bilangan…
- Pengertian Bilangan, Macam-Macam Bilangan dan… Pengertian Bilangan, Macam-Macam Jenis Bilangan dan Contohnya Lengkap – Kali ini kita akan membahas tentang pengertian bilangan dan macam-macam jenis bilangan beserta contoh bilangannya. Pengertian Bilangan Bilangan adalah suatu konsep matematika…
- Bilangan Desimal Bilangan Desimal Dalam Matematika, bilangan dapat diklasifikasikan ke dalam berbagai jenis, yaitu bilangan real, bilangan asli, bilangan bulat, bilangan rasional, dan sebagainya. Bilangan desimal ada di antara mereka. Desimal juga merupakan cara…
- Cara Menentukan Pecahan yang Nilainya di Antara Dua Pecahan Untuk menentukan pecahan yang nilainya di antara dua pecahan silahkan simak penjelasan berikut ini. Misalkan kita memiliki bilangan pecahan 1/3 dan 2/3. Sekarang coba pikirkan, apakah ada bilangan pecahan yang…
- Himpunan Penyelesaian Persamaan Linear Satu Variabel Sebelumnya sudah dibahas bahwa kalimat terbuka yang dihubungkan oleh tanda sama dengan (=) disebut persamaan, sedangkan persamaan dengan satu variabel berpangkat satu atau berderajat satu disebut persamaan linear satu variabel. Bagaimana cara menentukan…
- Pembagian Apa itu Pembagian ? Pembagian adalah proses membagi kumpulan item menjadi bagian yang sama dan merupakan salah satu operasi aritmatika dasar dalam matematika. Kami mungkin menghadapi situasi yang berbeda setiap…
- Penyelesaian PLSV dengan Persamaan-Persamaan yang Ekuivalen Sebelumnya kami sudah dibahas tentang cara penyelesain persamaan linear satu variabel dengan cara substitusi (penggantian). Cara itu kelihatan agak ribet karena harus mencoba satu persatu suatu bilangan yang jumlahnya tidak terhingga.…
- Proporsi Proporsi Perbandingan/rasio dan proporsi merupakan dasar utama untuk memahami berbagai konsep dalam matematika maupun sains. Proporsi mengatakan bahwa dua perbandingan (atau dua pecahan) adalah sama. Dengan kalimat lain dua buah perbandingan dikatakan…
- Operasi Pembagian pada Bilangan Bulat Untuk memahami operasi pembagian pada bilangan bulat, Anda harus paham dengan konsep operasi perkalian pada bilangan bulat karena pembagian merupakan operasi kebalikan dari perkalian. Untuk lebih mudah memahami pernyataan bahwa operasi kebalikan dari…
- Pengertian Bilangan Pecahan dan Jenis-Jenis Bilangan… Pengertian Bilangan Pecahan dan Jenis-Jenis Bilangan Pecahan Serta Contohnya Kita dapat mengartikan secara singkat bahwa bilangan pecah dapat diartikan sebagai sebuah bilangan yang memiliki pembilang dan juga penyebut. Sedangkan yang…
- Pengertian Pola Bilangan : Macam Jenis dan Contoh… Pengertian Pola Bilangan : Macam Jenis dan Contoh Pola Bilangan Sebelum mempelajari barisan aritmatika dan barisan geometri, ada sub bab materi barisan bilangan atau bab yang perlu dipahami terlebih dahulu yaitu pola…
- Pengertian Perpangkatan Bilangan Pada waktu duduk di bangku sekolah dasar, Anda sudah mempelajari tentang pengertian kuadrat suatu bilangan. Di tingkat SMP atau MTs Anda kembali mempelajari tentang bilangan berpangkat. Coba Anda ingat-ingat kembali…
- Pengertian, Rumus, Dan Contoh Perkalian Pecahan… Pengertian, Rumus, Dan Contoh Perkalian Pecahan Serta Pemahamannya Terlengkap – Operasi perkalian merupakan salah satu operasi matematika dasar yang harus dikuasai. Nah, kali ini kita akan membahas tentang perkalian bilangan pecahan.…
- Cara Mengubah Bentuk Pecahan ke Bentuk Persen Kita ketahui bahwa pecahan merupakan bilangan yang dinyatakan dengan a/b, di mana a merupakan pembilang dan b merupakan penyebut, sedangkan persen dapat diartikan sebagai perseratus yang ditulis dengan notasi %.…
- Operasi Perkalian pada Bentuk Aljabar Perlu Anda ingat kembali bahwa pada perkalian bilangan bulat akan berlaku sifat distributif perkalian terhadap penjumlahan, yaitu a(b+c) = (ab)+(ac) dan sifat distributif perkalian terhadap pengurangan, yaitu a(b – c) = (ab) – (a…
- Matriks – Operasi Matriks, Rumus, Contoh Soal… Matriks – Operasi Matriks, Rumus, Contoh Soal Matriks dan Jawabannya Lengkap – Dalam matematika, matriks adalah susunan bilangan, simbol, atau ekspresi, yang disusun dalam baris dan kolom sehingga membentuk suatu bangun…
- Sifat-Sifat Penjumlahan dan Pengurangan Pecahan Sifat-sifat penjumlahan dan pengurangan pecahan sama seperti sifat-sifat penjumlahan bulangan bulat. Pada bilangan bulat kita mengenal lima sifat yakni sifat tertutup, sifat komutatif, sifat asosiatif, mempunyai unsur identitas, dan mempunyai invers. Kelima…
- Menentukan KPK Dengan Cara Faktorisasi Prima Cara tersebut boleh dibilang sangat ribet karena harus mencari kelipatan dari masing-masing bilangan. Untuk mengatasi hal tersebut ada cara yang lebih mudah yakni dengan menggunakan faktorisasi prima. Faktorisasi prima merupakan…
- Pengertian Kuadrat dan Akar Kuadrat Bilangan Bulat Pada saat ditingkat SD/MI Anda telah mempelajari kuadrat dan akar kuadrat bilangan bulat. Sekarang pada postingan ini kembali mengulas tentang materi kuadrat dan akar kuadrat dengan tujuan untuk mengingatkan kepada…