Operasi hitung campuran pada bilangan bulat sering muncul pada soal-soal ujian nasional (UN). Jadi Anda sangat penting mengetahui cara mengerjakan operasi hitung campuran pada bilangan bulat. Contoh hitung campuran bilangan bulat yang muncul pada UN yakni UN Matematika tahun 2009 dengan soal seperti berikut: Hasil dari (–4 + 6) × (–2 – 3) adalah . . .
- –10
- – 2
- 10
- 50
Bagaimana cara mengerjakan soal di atas? Dalam menyelesaikan operasi hitung bilangan bulat seperti soal UN 2009 di atas, Anda harus memperhatikan dua hal, yakni tanda operasi hitung dan tanda kurung.
Apabila dalam suatu operasi hitung campuran bilangan bulat terdapat tanda kurung, pengerjaan yang berada dalam tanda kurung harus dikerjakan terlebih dahulu. Tetapi, bila dalam suatu operasi hitung bilangan bulat tidak terdapat tanda kurung, pengerjaannya berdasarkan sifat-sifat operasi hitung berikut.
- Operasi penjumlahan (+) dan pengurangan (–) sama kuat, artinya operasi yang terletak di sebelah kiri dikerjakan terlebih dahulu.
- Operasi perkalian (× ) dan pembagian (:) sama kuat, artinya operasi yang terletak di sebelah kiri dikerjakan terlebih dahulu.
- Operasi perkalian ( × ) dan pembagian (:) lebih kuat daripada operasi penjumlahan (+) dan pengurangan (–), artinya operasi perkalian (×) dan pembagian (:) dikerjakan terlebih dahulu daripada operasi penjumlahan (+) dan pengurangan (–).
Jadi berdasarkan pembahasan di atas berapa hasil dari soal UN 2009 di atas? Jawabanya adalah –10 (a)
Untuk memantapkan pemahaman Anda tentang cara mengerjakan operasi hitung campuran pada bilangan bulat, silahkan simak contoh soal di bawah ini.
Contoh Soal 1.
Tentukan hasil dari (16 : 2) + (–5 × 2) –(–3)!
(UN 2010)
Penyelesaian:
Ingat kerjakan yang ada dalam kurung terlebih dahulu, maka:
(16 : 2) + (–5 × 2) –(–3)
= 8 + (–10) –(–3)
= 8 –10 + 3
= 1
Jadi, (16 : 2) + (–5 × 2) –(–3) = 1
Contoh Soal 2
Tentukan hasil dari:
- 45 + 56×48 – 216 : 9
- (–9) – 6×(–72) : 16 – 20
- 168 : ((17 – 24)×(–19 + 15))
- 360 : (15 + ((27 – 32)×(–9 + 16)))
- 420 : (–7) + 70 – 30×(–8) + 15
- 13×(140 : (–7)) + (–2) × 19
Penyelesaian:
- Ingat kerjakan yang ada perkalian dan pembagian terlebih dahulu
45 + 56 × 48 – 216 : 9
= 45 + (56 × 48) – (216 : 9)
= 45 + 2688 – 24
= 2709
- Sama seperti soal 1a, kerjakan yang ada perkalian dan pembagian terlebih dahulu, karena perkalian dan pembagian sama-sama kuat maka kerjakan dari kiri yakni perkalian dulu baru kemudian pembagian:
(–9) – 6 × (–72) : 16 – 20
= (–9) – (6 × (–72)) : 16 – 20
= (–9) – (–432) : 16 – 20
= (–9) – (–432 : 16) – 20
= (–9) – (–27) – 20
= (–9) + 27 – 20
= – 2
- Ingat kerjakan yang ada dalam kurung terlebih dahulu dan mulai dari kiri:
168 : ((17 – 24) × (–19 + 15))
= 168 : ((– 7) × (–4))
= 168 : 28
= 6
- Sama seperti soal 1c, kerjakan yang ada dalam kurung terlebih dahulu, maka:
360 : (15 + ((27 – 32) × (–9 + 16)))
= 360 : (15 + (– 5 × 7))
= 360 : (15 + (– 35))
= 360 : (– 20)
= –18
- Ingat kerjakan yang ada perkalian dan pembagian terlebih dahulu, karena perkalian dan pembagian sama-sama kuat maka kerjakan yang ada di kiri terlebih dahulu:
420 : (–7) + 70 – 30 × (–8) + 15
= (420 : (–7)) + 70 – (30 × (–8)) + 15
= –60 + 70 – (–240) + 15
= –60 + 70 + 240 + 15
= 265
Ingat** bahwa –(–240) = 240 atau –(–240) = + 240
- Sama seperti soal 1d, kerjakan yang ada dalam kurung terlebih dahulu, maka:
13 × (140 : (–7)) + (–2) × 19
= 13 × (–20) + (–2) × 19
= (13 × (–20)) + ((–2) × 19)
= (–260) + (–38)
= –298
Demikian postingan Mafia Online tentang cara mengerjakan operasi hitung campuran bilanagn bulat. Mohon maaf jika ada kata atau hitungan yang salah dalam postingan ini.
Artikel Paling Populer :
- Gagasan Besar Pecahan Pecahan memiliki pembilang dan penyebut. Penyebut memberi tahu berapa banyak bagian yang sama dari keseluruhan yang dibagi dan pembilang memberi tahu berapa banyak bagian yang ada. Pecahan dapat memiliki arti…
- Notasi Himpunan, Anggota Himpunan, dan Menyatakan Himpunan Pada postingan sebelumnya sudah dibahas tentang pengertian himpunan. Sekarang kita akan mempelajari bagaimana notasi dan anggota himpunan. Dalam dunia matematika, suatu himpunan dilambangkan dengan huruf kapital, misalnya A, B, C, D,…
- Penjumlahan dan Metode Penjumlahan Penjumlahan dan Metode Penjumlahan Penjumlahan merupakan salah satu dari empat operasi aritmatika dasar dalam matematika yaitu penjumlahan, pengurangan, perkalian dan pembagian. Operator ini digunakan untuk menjumlahkan dua atau lebih bilangan…
- Sifat-Sifat Penjumlahan dan Pengurangan Pecahan Sifat-sifat penjumlahan dan pengurangan pecahan sama seperti sifat-sifat penjumlahan bulangan bulat. Pada bilangan bulat kita mengenal lima sifat yakni sifat tertutup, sifat komutatif, sifat asosiatif, mempunyai unsur identitas, dan mempunyai invers. Kelima…
- Cabang-Cabang Matematika Cabang Matematika Cabang utama matematika adalah aljabar, teori bilangan, geometri dan aritmatika. Berdasarkan cabang-cabang ini utama ini cabang-cabang lain telah ditemukan. Sebelum munculnya zaman modern, studi matematika sangat terbatas. Namun seiring…
- Sifat-Sifat Penjumlahan Bilangan Bulat Untuk menjumlahkan bilangan bulat ada dua cara yang bisa dilakukan yakni menjumlahkan dengan bantuan alat dan menjumlahkan tanpa bantuan. Untuk selengkapnya silahkan baca pada postingan sebelumnya yang berjudul “Operasi penjumlahan…
- Pengertian Perpangkatan Bilangan Pada waktu duduk di bangku sekolah dasar, Anda sudah mempelajari tentang pengertian kuadrat suatu bilangan. Di tingkat SMP atau MTs Anda kembali mempelajari tentang bilangan berpangkat. Coba Anda ingat-ingat kembali…
- Sifat-Sifat Bilangan Berpangkat Dalam postingan ini, masih dalam pembahsan perpangkatan yakni sifat-sifat bilangan berpangkat. Apa saja sifat-sifat bilangan berpangkat? Sifat perkalian bilangan berpangkat Pada perkalian bilangan berpangkat akan berlaku sifat sebagai berikut: pm × pn =…
- Penyelesaian PLSV dengan Persamaan-Persamaan yang Ekuivalen Sebelumnya kami sudah dibahas tentang cara penyelesain persamaan linear satu variabel dengan cara substitusi (penggantian). Cara itu kelihatan agak ribet karena harus mencoba satu persatu suatu bilangan yang jumlahnya tidak terhingga.…
- Penyelesaian Persamaan Linear Satu Variabel Bentuk Pecahan Dalam menyelesaikan persamaan linear satu variabel (PLSV) yang berbentuk pecahan caranya hampir sama seperti mengerjakan PLSV yang bentuknya bukan pecahan yang sudah dibahas pada postingan sebelumnya dan tetnunya cara tersebut hampir sama…
- Bagaimana Cara Menentukan Letak Pecahan pada Garis Bilangan Masih ingatkah dengan cara menentukan letak bilangan bulat pada garis bilangan? Untuk mengingatkan kembali, berikut contoh letak bilangan bulat pada garis bilangan. Untuk menentukan letak pecahan pada garis bilangan, caranya hampir sama…
- Menentukan Nilai Bentuk Aljabar Dengan Substitusi Sebelumnya kami sudah membahas tentang operasi hitung bentuk aljabar yang meliputi: Operasi penjumlahan dan pengurangan Operasi perkalian Operasi pembagian Operasi perpangkatan Sekarang pada postingan ini Mafia Online akan membahas cara…
- Sifat-Sifat Perkalian Pada Bilangan Bulat Perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Misalnya 3 × 2 = 2 + 2 + 2 dan 2 × 3 = 3 + 3. Meskipun hasil akhirnya sama, perkalian…
- Sifat-sifat dan Invers Perkalian Pada Pecahan Sifat-sifat perkalian pada pecahan sama seperti sifat-sifat perkalian pada bulangan bulat. Ada enam sifat-sifat perkalian pada bilangan bulat yakni sifat tertutup, sifat komutatif, sifat asosiatif, sifat distributif perkalian terhadap penjumlahan, sifat distributif…
- Cara Menentukan Kelipatan Suatu Bilangan Bulat Positif Materi kelipatan suatu bilangan bulat positif merupakan materi dasar yang Anda harus kuasai untuk menguasai materi kelipatan persekutuan terkecil (KPK) yang akan kita bahas pada postingan berikutnya. Materi ini sudah…
- Operasi Pembagian Pada Pecahan Masih ingatkah Anda dengan operasi pembagian pada bilangan bulat? Kita ketahui bahwa operasi pembagian pada bilangan bulat merupakan invers (kebalikan) dari perkalian. Hal ini juga berlaku pada pembagian bilangan pecahan. Pembagian Pecahan…
- Cara Mengubah Pecahan Biasa Menjadi Pecahan Campuran Perlu kita ketahui bahwa bilangan pecahan campuran merupakan bilangan yang terdiri dari bilangan bulat dan bilangan pecahan. Untuk memahami cara mengubah pecahan biasa menjadi pecahan campuran atau dari pecahan campuran menjadi pecahan biasa,…
- Perkalian Pecahan dan Contoh Soal Pada perkalian pecahan kita tidak perlu lagi menyamakan penyebut seperti pada penjumlahan dan pengurangan pecahan. Kita hanya mengalikan pembilang dengan pembilang dan penyebut dengan penyebut. Untuk membuktikan hal tersebut silahkan perhatikan uraian berikut.…
- Menaksir Hasil Perkalian dan Pembagian Bilangan Bulat Mungkin Anda pernah berbelanja di supermarket. Terkadang harga yang ditawarkan tidak selalu bulat, misalnya harga selusin buku tulis sebesar Rp 18.280,00. Jika kamu membeli dua lusin buku tulis dan kamu…
- Bilangan Pangkat Pecahan : Pengertian, Rumus, Sifat… Bilangan Berpangkat Pecahan : Pengertian, Rumus, Sifat Operasi Hitung dan Contoh Soal Bilangan Pangkat Pecahan Lengkap – Bilangan berpangkat adalah bentuk perkalian bilangan-bilangan yang sama atau perkalian berulang, pangkat pada bilangan…