Sebelumnya kami sudah dibahas tentang cara penyelesain persamaan linear satu variabel dengan cara substitusi (penggantian). Cara itu kelihatan agak ribet karena harus mencoba satu persatu suatu bilangan yang jumlahnya tidak terhingga. Kemudian bagaimana solusi yang tepat untuk menyelesaikan persamaan linear satu variabel?
Solusi yang paling tepat untuk menyelesaikan persamaan linear satu variabel adalah dengan cara menggunakan persamaan-persamaan yang ekuivalen. Apa itu pengertian persamaan yang ekuivalen? Sekarang silahkan perhatikan persamaan x – 2 = 3.
a). Persamaan x – 2 = 3. Jika x diganti bilangan 5 maka 5 – 2 = 3 (benar).
Jadi, penyelesaian persamaan x – 2 = 3 adalah x = 5.
b). Sekarang persamaan x – 2 = 3 kedua ruas dikalikan 2 maka menjadi 2x – 4 = 6. Jika x diganti bilangan 5 maka 2(5) – 4 = 6 (benar). Jadi, penyelesaian persamaan 2x – 4 = 6 adalah x = 5.
c). Sekarang persamaan x – 2 = 3 kedua ruas ditambah 9, maka menjadi x + 7 = 12. Jika x diganti bilangan 5 maka 5 + 7 = 12 (benar). Jadi, penyelesaian persamaan x + 7 = 12 adalah x = 5.
Berdasarkan uraian di atas tampak bahwa ketiga persamaan mempunyai penyelesaian yang sama, yaitu x = 8. Persamaan-persamaan di atas disebut persamaan yang ekuivalen. Suatu persamaan yang ekuivalen dinotasikan dengan “<=>”. Dengan demikian bentuk x – 2 = 3; 2x – 4 = 6; dan x + 7 = 12 dapat dituliskan sebagai x – 2 = 3 <=> 2x – 4 = 6 <=> x + 7 = 12. Jadi, berdasarkan uraian di atas maka dapat ditarik kesimpulan bahwa dua persamaan atau lebih dikatakan ekuivalen jika mempunyai himpunan penyelesaian yang sama dan dinotasikan dengan tanda “<=>”.
Jadi, “Suatu persamaan dapat dinyatakan ke dalam persamaan yang ekuivalen dengan cara menambah atau mengurangi kedua ruas dengan bilangan yang sama dan mengalikan atau membagi kedua ruas dengan bilangan yang sama“.
Untuk memantapkan pemahaman Anda tentang cara penyelesian persamaan linear satu variabel silahkan simak contoh soal di bawah ini.
Contoh Soal 1
Tentukan himpunan penyelesaian dari persamaan berikut dengan menambah atau mengurangi kedua ruas dengan bilangan yang sama, jika variabel pada himpunan bilangan bulat.
- m – 9 = 13
- –11 + x = 3
- 2a + 1 = a – 3
- 12 + 3a = 5 + 2a
- 3(x + 1) = 2(x + 4)
Penyelesaian:
- m – 9 = 13
<=> m – 9 + 9 = 13 + 9 (kedua ruas ditambah 9)
<=> m = 22
- –11 + x = 3
<=> –11 + 11 + x = 3 + 11 (kedua ruas ditambah 11)
<=> m = 14
- 2a + 1 = a – 3
<=> 2a + 1 – 1 = a – 3 – 1 (kedua ruas dikurangi 1)
<=> 2a = a – 4
<=> 2a – a = a – a – 4 (kedua ruas dikurangi a)
<=> a = – 4
- 12 + 3a = 5 + 2a
<=> 12 – 12 + 3a = 5 + 2a – 12 (kedua ruas dikurangi 12)
<=> 3a = 2a – 7
<=> 3a – 2a = 2a – 2a – 7 (kedua ruas dikurangi 2a)
<=> a = – 7
- 3(x + 1) = 2(x + 4) jabarkan terlebih dahulu, maka:
<=> 3x + 3 = 2x + 8
<=> 3x + 3 – 3 = 2x + 8 – 3 (kedua ruas dikurangi – 3)
<=> 3x = 2x + 5
<=> 3x – 2x = 2x – 2x + 5 (kedua ruas dikurangi – 2x)
<=> x = 5
Bagaimana? Gampang bukan? Sekarang coba kerjakan soal latihan berikut ini.
Soal Latihan 1
Tentukan himpunan penyelesaian dari persamaan berikut dengan menambah atau mengurangi kedua ruas dengan bilangan yang sama, jika variabel pada himpunan bilangan bulat.
- 5(y – 1) = 4y
- 4(3 – 2y) = 15 – 7y
- 3(2y – 3) = 5(y – 2)
- 8 – 2(3 – 4y) = 7y – 1
- 5x + 7(3x + 2) = 6(4x + 1)
Contoh Soal 2
Tentukan himpunan penyelesaian dari persamaan berikut dengan mengalikan atau membagi kedua ruas dengan bilangan yang sama, jika variabel pada himpunan bilangan bulat.
- 2x + 3 = 11
<=> 2x + 3 – 3 = 11 – 3 (kedua ruas dikurangi 3)
<=> 2x = 8
<=> ½.2x = ½.8 (kedua ruas dikalikan ½)
<=> x = 4
- 7x = 8 + 3x
<=> 7x – 3x = 8 + 3x – 3x (kedua ruas dikurangi 3x)
<=> 4x = 8
<=> ¼.4x = ¼.8 (kedua ruas dikali ¼)
<=> x = 2
- 3p + 5 = 17 – p
<=> 3p + 5 – 5 = 17 – 5 – p (kedua ruas dikurangi 5)
<=> 3p = 12 – p
<=> 3p + p = 12 – p + p (kedua ruas tambah p)
<=> 4p = 12
<=> ¼.4p = ¼.12 (kedua ruas dikali ¼)
<=> p = 3
- 7q = 5q – 12
<=> 7q – 5q = 5q – 5q – 12 (kedua ruas dikurangi 5q)
<=> 2q = – 12
<=> ½.2q = ½.(– 12) (kedua ruas dikali ½)
<=> q = – 6
- 6 – 5y = 9 – 4y
<=> 6 – 6 – 5y = 9 – 6 – 4y (kedua ruas dikurangi 6)
<=> – 5y = 3 – 4y
<=> – 5y + 4y = 3 – 4y + 4y (kedua ruas ditambah 4y)
<=> –y = 3
<=> –y = 3 (kedua ruas dikalikan (– 1))
<=> (–y)(– 1) = 3.(– 1)
<=> y = – 3
Soal Latihan 2
Tentukan himpunan penyelesaian dari persamaan berikut dengan mengalikan atau membagi kedua ruas dengan bilangan yang sama, jika variabel pada himpunan bilangan bulat.
- 7n + 4 = 4n – 17
- 2(5 – 2x) = 3(5 – x)
- –2x + 5 = –(x + 9)
- 18 + 7x = 2(3x – 4)
- 3(2x – 3) – 2(1 – x) – (x + 3) = 0
Demikian postingan kali ini tentang penyelesaian persamaan linear satu variabel dengan persamaan-persamaan yang ekuivalen.
Artikel Paling Populer :
- Pengertian massa jenis Zat Pada postingan ini akan membahas salah satu besaran turunan yaitu massa jenis. Apa pengertian massa jenis? Sebelumnya kami sudah membahas mengenai besaran turunan. Salah satu contoh besaran turunan adalah massa jenis. Kenapa…
- Teori Kinetik Gas – Persamaan Umum Gas, Hukum Gas… Pernahkah Anda melihat gelembung-gelembung ketika minuman bersoda dituangkan? Bagaimana bentuk dan jumlahnya? Gelembung-gelembung minuman bersoda merupakan inti molekul-molekul. Gelembung-gelembung minuman bersoda akan berjumlah banyak dan volumenya semakin membesar saat dituangkan.…
- 5 Contoh Soal Kimia Dan Pembahasan Terlengkap… Telah kita pelajari tentang pengertan termokimia pada postingan sebelumnya. Bahwa Termokimia adalah cabang ilmu kimia yang mempelajari tentang perubahan kalor atau energi yang menyertai suatu reaksi kimia, baik yang diserap…
- Matriks – Operasi Matriks, Rumus, Contoh Soal… Matriks – Operasi Matriks, Rumus, Contoh Soal Matriks dan Jawabannya Lengkap – Dalam matematika, matriks adalah susunan bilangan, simbol, atau ekspresi, yang disusun dalam baris dan kolom sehingga membentuk suatu bangun…
- Rumus Dan Pembahasan Contoh Soal Persamaan Lingkaran… Rumus Dan Pembahasan Contoh Soal Persamaan Lingkaran Matematika Lingkaran adalah tempat kedudukan atau himpunan titik titik yang berjarak sama terhadap suatu titik tertentu. Titik tertentu tersebut dinamakan pusat lingkaran dan…
- Pengertian Pangkat Tiga dan Akar Pangkat Tiga Pada postingan sebelumnya yang berjudul “Pengertian Perpangkatan Bilangan” sudah dijelaskan bahwa operasi perpangkatan merupakan perkalian berulang dengan unsur yang sama. Hal ini juga berlaku pada bilangan berpangkat tiga. Jadi, m3 =…
- Menghitung Persentase Untung atau Rugi Dalam kehidupan sehari-hari kita sering mendengar kata “untung dan rugi”. Adakalanya dalam kehidupan sehari-hari untung atau rugi itu dinyatakan dalam bentuk persen. Biasanya persentase untung atau rugi dihitung dari harga…
- Menentukan Nilai Bentuk Aljabar Dengan Substitusi Sebelumnya kami sudah membahas tentang operasi hitung bentuk aljabar yang meliputi: Operasi penjumlahan dan pengurangan Operasi perkalian Operasi pembagian Operasi perpangkatan Sekarang pada postingan ini Mafia Online akan membahas cara…
- Bagaimana Cara Menentukan Letak Pecahan pada Garis Bilangan Masih ingatkah dengan cara menentukan letak bilangan bulat pada garis bilangan? Untuk mengingatkan kembali, berikut contoh letak bilangan bulat pada garis bilangan. Untuk menentukan letak pecahan pada garis bilangan, caranya hampir sama…
- Pengertian Reaksi Kimia, Kesetimbangan Kimia, dan… Pernahkah Anda mengamati keadaan gua? Pada umumnya, keadaan di dalam gua adalah lembap, banyak tetesan air, stalaktit, dan stalakmit. Stalaktit dan stalakmit terbentuk dari endapan mineral kalsium karbonat (CaCO3). Endapan…
- Termokimia Jadi termokimia apa sih? kita bakal ngebahas tentang sistem dan lingkungan, yuk langsung saja! Perubahan Entalpi Entalpi sendiri itu delta H, jadi perubahan energi pada suatu zat Ada dua jenis:…
- Gelombang Stasioner Ada yang sudah mengenal atau pernah mendengar mengenai Gelombang Stasioner ?? Jika Belum, Simak penjelasan terlengkapnnya di bawah ini. Pengertian Gelombang Stasioner Gelombang stasioner adalah perpaduan dua gelombang yang memiliki…
- Cara Menentukan Faktor Suatu Bilangan Bulat Cara menentukan faktor suatu bilangan bulat sangat penting dan Anda harus menguasainya karena materi ini merupakan materi dasar untuk menguasai konsep faktor persekutuan terbesar (FPB) yang nantinya akan dibahas setelah…
- Semboyan liberte, egalite, dan fraternite dalam… Semboyan liberte, egalite, dan fraternite dalam Revolusi Prancis memilki arti.... A. Kemerdekaan, emersatu dan kerjasama B. Kemerdekaan, persamaan, dan persaudaraan C. Persamaan, kemerdekaan, dan persaudaraan D. Kemerdekaan, persatuan, dan persaudaraan…
- Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian Dalam mempelajari persamaan dan pertidaksamaan linear satu variabel, Anda harus menguasai materi dasar terlebih dahulu agar bisa lanjut ke materi berikutnya. Adapun materi dasar yang dimaksud adalah pengertian pernyataan, pengertian kalimat terbuka,…
- Himpunan Penyelesaian Persamaan Linear Satu Variabel Sebelumnya sudah dibahas bahwa kalimat terbuka yang dihubungkan oleh tanda sama dengan (=) disebut persamaan, sedangkan persamaan dengan satu variabel berpangkat satu atau berderajat satu disebut persamaan linear satu variabel. Bagaimana cara menentukan…
- Cara Menentukan FPB dan KPK Dengan Pohon Faktor Pada dasarnya mencari faktor persekutuan terbesar (FPB) dan kelipatan persekutuan terkecil (KPK) dengan pohon faktor hampir sama seperti mencari FPB dan KPK dengan faktorisasi prima, karena dari pohon faktor ini akan menghasilkan fakorisasi…
- Pengertian dan Cara Menghitung Kemolaran, Kemolalan… Pengertian dan Cara Menghitung Kemolaran, Kemolalan dan Kenormalan Larutan Lengkap – Molaritas adalah jumlah mol zat terlarut dalam 1 liter larutan atau 1 mmol zat terlarut dalam 1 ml larutan. Satuan…
- Cara Menentukan Kelipatan Suatu Bilangan Bulat Positif Materi kelipatan suatu bilangan bulat positif merupakan materi dasar yang Anda harus kuasai untuk menguasai materi kelipatan persekutuan terkecil (KPK) yang akan kita bahas pada postingan berikutnya. Materi ini sudah…
- Sifat-Sifat Segitiga Secara Umum Kita sudah mengetahui pengertian dan jenis-jenis segitiga. Sekarang kita aka membahas mengenai sifat-sifat segitiga pada umum. Secara umum segitiga akan memeneuhi konsep ketidaksamaan segitiga, hubungan sudut dalam segitiga, dan hubungan sudut…