Pada postingan sebelumnya telah Anda ketahui bahwa banyaknya anggota himpunan A dinyatakan dengan n(A). Jika suatu himpunan dinyatakan dengan mendaftar anggota-anggotanya maka kalian dapat menentukan banyaknya anggota himpunan tersebut. Jika A adalah himpunan bilangan prima kurang dari 13 maka A = {2, 3, 5, 7, 11} dengan n(A) = 5. Himpunan A disebut himpunan berhingga, artinya banyaknya anggota A berhingga.
Jika B = {bilangan asli yang habis dibagi 2} maka B = {2, 4, 6, …}, dengan n(B) = tidak berhingga. Himpunan B disebut himpunan tak berhingga, karena banyaknya anggota B tak berhingga. Himpunan yang memiliki banyak anggota berhingga disebut himpunan berhingga. Himpunan yang memiliki banyak anggota tak berhingga disebut himpunan tak berhingga. Lalu apakah setiap himpunan pasti mempunyai anggota?
Jika P adalah himpunan persegi yang mempunyai tiga buah sisi maka anggota P tidak ada atau kosong. Himpunan P disebut himpunan kosong (tidak mempunyai anggota), karena jumlah sisi persegi adalah empat.
Jadi himpunan kosong adalah himpunan yang tidak mempunyai anggota, dan dinotasikan dengan { }. Jika R = {x | x < 1, x є C} maka R = {0} atau n(R) = 1. Himpunan R disebut himpunan nol. Anggota himpunan R adalah 0. Jadi, himpunan R bukan merupakan himpunan kosong.
Jadi himpunan nol adalah himpunan yang hanya mempunyai 1 anggota, yaitu nol (0).
Contoh soal himpunan kosong.
N adalah himpunan nama-nama bulan dalam setahun yang diawali dengan huruf C. Nyatakan N dalam notasi himpunan.
Penyelesaian:
Nama-nama bulan dalam setahun adalah Januari, Februari, Maret, April, Mei, Juni, Juli, Agustus, September, Oktober, November, dan Desember. Karena tidak ada nama bulan yang diawali dengan huruf C, maka N adalah himpunan kosong ditulis N = { }.
Gambar tersebut menunjukkan kelompok buah-buahan yang terdiri atas pisang, jeruk, apel, dan anggur. Jika P = {pisang, jeruk, apel, anggur} maka semesta pembicaraan dari himpunan P adalah himpunan S = {buah-buahan}. Dengan kata lain, S adalah himpunan semesta dari P. Himpunan S memuat semua anggota himpunan P.
Himpunan semesta atau semesta pembicaraan adalah himpunan yang memuat semua anggota atau objek himpunan yang dibicarakan. Himpunan semesta (semesta pembicaraan) biasanya dilambangkan dengan S.
Contoh soal himpunan semesta
Tentukan tiga himpunan semesta yang mungkin dari himpunan berikut.
- {2, 3, 5, 7}
- {kerbau, sapi, kambing}
Penyelesaian:
- Misalkan A = {2, 3, 5, 7}, maka himpunan semesta yang mungkin dari himpunan A adalah:
S = {bilangan prima} atau
S = {bilangan asli} atau
S = {bilangan cacah}.
- Himpunan semesta yang mungkin dari {kerbau, sapi, kambing} adalah {binatang}, {binatang berkaki empat}, atau {binatang memamah biak}.
Artikel Paling Populer :
- Menyelesaikan Masalah Dengan Menggunakan Konsep Himpunan Jika Anda amati masalah dalam kehidupan sehari-hari maka banyak di antaranya dapat diselesaikan dengan konsep himpunan. Agar dapat menyelesaikannya, Anda harus memahami kembali mengenai konsep diagram Venn dan Anda harus dapat menyatakan permasalahan…
- Bagaimana Cara Menentukan Letak Pecahan pada Garis Bilangan Masih ingatkah dengan cara menentukan letak bilangan bulat pada garis bilangan? Untuk mengingatkan kembali, berikut contoh letak bilangan bulat pada garis bilangan. Untuk menentukan letak pecahan pada garis bilangan, caranya hampir sama…
- Pengertian Bilangan Pecahan dan Jenis-Jenis Bilangan… Pengertian Bilangan Pecahan dan Jenis-Jenis Bilangan Pecahan Serta Contohnya Kita dapat mengartikan secara singkat bahwa bilangan pecah dapat diartikan sebagai sebuah bilangan yang memiliki pembilang dan juga penyebut. Sedangkan yang…
- Membaca Diagram Venn Dalam membaca diagram Venn, perhatikan himpunan semesta dan himpunan-himpunan lain yang berada pada diagram Venn tersebut. Anggota-anggota himpunan tertentu berada pada kurva yang dibatasi oleh himpunan tersebut. Agar kalian lebih memahami cara membaca…
- Operasi Pembagian Pada Pecahan Masih ingatkah Anda dengan operasi pembagian pada bilangan bulat? Kita ketahui bahwa operasi pembagian pada bilangan bulat merupakan invers (kebalikan) dari perkalian. Hal ini juga berlaku pada pembagian bilangan pecahan. Pembagian Pecahan…
- Selisih (Difference) dan Komplemen Suatu Himpunan Pada postingan sebelumnya Kami sudah membahas tentang operasi himpunan yakni irisan himpunan dan gabungan himpunan. Pada postingan kali ini masih mengulas tentang operasi himpunan yakni selisih dan komplemen dua himpunan. Apa itu selisih…
- Mempelajari Sistem Persamaan Linier Dan Metode… Sistem persamaan linier sebenarnya hampir sama dengan persamaan aljabar, yakni sebuah sistem penghitungan yang menggunakan metode matematika dan juga dapat di gambarkan dengan menggunakan bentuk garis lurus dalam sebuah grafik.…
- Pengertian Perpangkatan Bilangan Pada waktu duduk di bangku sekolah dasar, Anda sudah mempelajari tentang pengertian kuadrat suatu bilangan. Di tingkat SMP atau MTs Anda kembali mempelajari tentang bilangan berpangkat. Coba Anda ingat-ingat kembali…
- Menentukan KPK Dengan Cara Faktorisasi Prima Cara tersebut boleh dibilang sangat ribet karena harus mencari kelipatan dari masing-masing bilangan. Untuk mengatasi hal tersebut ada cara yang lebih mudah yakni dengan menggunakan faktorisasi prima. Faktorisasi prima merupakan…
- Gagasan Besar Pecahan Pecahan memiliki pembilang dan penyebut. Penyebut memberi tahu berapa banyak bagian yang sama dari keseluruhan yang dibagi dan pembilang memberi tahu berapa banyak bagian yang ada. Pecahan dapat memiliki arti…
- Sifat-Sifat Penjumlahan Bilangan Bulat Untuk menjumlahkan bilangan bulat ada dua cara yang bisa dilakukan yakni menjumlahkan dengan bantuan alat dan menjumlahkan tanpa bantuan. Untuk selengkapnya silahkan baca pada postingan sebelumnya yang berjudul “Operasi penjumlahan…
- Termasuk jenis debat apakah kegiatan debat yang… Termasuk jenis debat apakah kegiatan debat yang dilakukan oleh anggota parlemen... A. Formal B. Informal C. Semiformal D. Teratur E. Terstruktur Jawaban : A. Formal
- Cara Menentukan FPB dan KPK Dengan Pohon Faktor Pada dasarnya mencari faktor persekutuan terbesar (FPB) dan kelipatan persekutuan terkecil (KPK) dengan pohon faktor hampir sama seperti mencari FPB dan KPK dengan faktorisasi prima, karena dari pohon faktor ini akan menghasilkan fakorisasi…
- Sifat Cermin Cekung Ada yang sudah mengenal atau pernah mendengar mengenai istilah Cermin Cekung? Simak penjelasan terlengkapnnya di bawah ini. Pengertian Cermin Cekung Cermin cekung merupakan suatu cermin yang berbentuk lengkung, dimana permukaan…
- Menentukan Banyaknya Himpunan Bagian dari Suatu Himpunan Anda telah mempelajari cara menentukan himpunan bagian suatu himpunan yang memiliki satu anggota, dua anggota, tiga anggota, dan n anggota. Untuk mengetahui banyaknya himpunan bagian suatu himpunan, pelajari tabel berikut. Himpunan Banyaknya Anggota Himpunan…
- Pengertian Bilangan Pecahan Dalam kehidupan sehari-hari kita sering melihat benda-benda yang dibagi dengan ukuran yang sama, misalnya sebuah apel yang dibagi menjadi dua bagian yang sama dan sebuah kue tar (kue ulang tahun)…
- Operasi Perkalian pada Bilangan Bulat Kita ketahui bahwa perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Agar lebih memahami maksud pernyataan tersebut silahkan perhatikan contoh berikut. 3 × 2 = 2 + 2 + 2 = 6 2 × 3…
- Himpunan Penyelesaian Persamaan Linear Satu Variabel Sebelumnya sudah dibahas bahwa kalimat terbuka yang dihubungkan oleh tanda sama dengan (=) disebut persamaan, sedangkan persamaan dengan satu variabel berpangkat satu atau berderajat satu disebut persamaan linear satu variabel. Bagaimana cara menentukan…
- Notasi Himpunan, Anggota Himpunan, dan Menyatakan Himpunan Pada postingan sebelumnya sudah dibahas tentang pengertian himpunan. Sekarang kita akan mempelajari bagaimana notasi dan anggota himpunan. Dalam dunia matematika, suatu himpunan dilambangkan dengan huruf kapital, misalnya A, B, C, D,…
- Pengertian dan Cara Menyajikan Relasi dalam Matematika Pengertian dan Cara Menyajikan Relasi dalam Matematika Salam jumpa kembali dengan artikel-artikel portal yang selalu menyajikan informasi seputar materi pelajaran dan pengetahuan umum. Kali ini kita akan membahas salah satu…