Sebelumnya sudah membahas materi hubungan antar sudut, akan tetapi sekarang juga tetap membahas materi tentang hubungan antar sudut. Pembahasan kali ini lebih memfokuskan bagaimana hubungan antar sudut jika sudut-sudut tersebut sehadap dan berseberangan dan bagaiman jika sudut-sudut tersebut luar sepihak dan dalam sepihak. Oke, silahkan anda pelajari materinya kemudian pelajari cara menyelesaikan soal-soalnya yang berkaitan dengan materi ini.
Sudut-Sudut Sehadap dan Berseberangan
Sekarang coba perhatikan gambar di bawah ini.
Pada gambar di atas, garis m // n dan dipotong oleh garis l. Titik potong garis l terhadap garis m dan n berturut-turut di titik P dan titik Q. Pada gambar di atas, tampak bahwa sudut P2 dan sudut Q2 menghadap arah yang sama. Demikian juga sudut P1 dan sudut Q1, sudut P3 dan sudut Q3, serta sudut P4 dan sudut Q4. Sudut-sudut yang demikian dinamakan sudut-sudut sehadap. Sudut sehadap besarnya sama.
Jika dua buah garis sejajar dipotong oleh garis lain maka akan terbentuk empat pasang sudut sehadap yang besarnya sama. Jadi, dapat dituliskan
∠P1 sehadap dengan ∠Q1 dan ∠P1 = ∠Q1;
∠P2 sehadap dengan ∠Q2 dan ∠P2 = ∠Q2;
∠P3 sehadap dengan ∠Q3 dan∠P3 = ∠Q3;
∠P4 sehadap dengan ∠Q4 dan ∠P4 = ∠Q4.
Contoh soal dan Pembahasan tentang Sudut-Sudut Sehadap
Perhatikan gambar di bawah ini.
- Sebutkan pasangan sudut-sudut sehadap.
- Jika besar∠K1 = 102°, tentukan besar
- ∠L1;
- ∠K2;
- ∠L2.
Penyelesaian
- Berdasarkan gambar di samping diperoleh
∠K1 sehadap dengan ∠L1
∠K2 sehadap dengan ∠L2
∠K3 sehadap dengan ∠L3
∠K4 sehadap dengan ∠L4
- Jika∠K1 = 102° maka
- ∠L1 = ∠K1 (sehadap) = 102°
- ∠K2 = 180° – ∠K1 (berpelurus) = ∠K2 = 180° – 102° = ∠K2 = 78°
- ∠L2 = ∠K2 (sehadap) = ∠L2 = 78o
Sekarang perhatikan gambar di bawah ini.
Pada gambar tersebut besar ∠P3 = ∠Q1 dan ∠P4 = sudut Q2. Pasangan sudut P3 dan sudut 1, serta sudut P4 dan sudut Q2 disebut sudut-sudut dalam berseberangan. Jika dua buah garis sejajar dipotong oleh garis lain, besar sudut-sudut dalam berseberangan yang terbentuk adalah sama besar.
Sekarang perhatikan pasangan sudut P1 dan sudut Q3, serta sudut P2 dan sudut Q4. Pasangan sudut tersebut adalah sudut-sudut luar berseberangan, di mana sudut P1 = sudut Q3 dan sudut P2 = sudut Q4. Jika dua buah garis sejajar dipotong oleh garis lain maka besar sudut-sudut luar berseberangan yang terbentuk adalah sama besar.
Contoh soal dan Pembahasan tentang Sudut-Sudut Berseberangan
Perhatikan gambar di atas.
- Sebutkan pasangan sudut- sudut dalam berseberangan.
- Jika ∠A1 = 75°, tentukan besar:∠A2;∠A3; dan ∠B4.
Penyelesaian:
- Pada gambar di atas diperoleh
∠A1 dalam berseberangan dengan ∠B3;
∠A2 dalam berseberangan dengan ∠B4.
- Jika ∠A1 = 75° maka:
∠A2 = 180°– sudut A1 (berpelurus)
∠A2 = 180° – 75°
∠A2 = 105°
∠A3 = ∠A1 (bertolak belakang) = 75°
∠B4 = ∠A2 (dalam berseberangan) = 105°
Sudut-Sudut Dalam Sepihak dan Luar Sepihak
Sekarang perhatikan gambar di bawah ini.
Perhatikan Gambar di atas. Pada gambar tersebut garis m // n dipotong oleh garis l di titik P dan Q. Perhatikan sudut P3 dan sudut Q2. Kedua sudut tersebut terletak di dalam garis m dan n serta terhadap garis l keduanya terletak di sebelah kanan (sepihak). Pasangan sudut tersebut dinamakan sudut-sudut dalam sepihak. Dengan demikian diperoleh:
- ∠P3 dalam sepihak dengan ∠Q2;
- ∠P4 dalam sepihak dengan ∠Q1.
Sebelumnya telah sudah posting bahwa:
∠P3 = ∠Q3 (sehadap) dan
∠P2 = ∠Q2 (sehadap).
Padahal ∠2 = 180° – ∠P3 (berpelurus), sehingga
∠Q2 = ∠P2 = 180° – ∠P3 atau
∠P3 + ∠Q2 = 180°
Tampak bahwa jumlah ∠P3 dan ∠Q2 adalah 180°.
Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut dalam sepihak adalah 180°. Dengan cara yang sama, dapat dibuktikan bahwa ∠P4 + ∠Q1 = 180°.
Contoh Soal dan Pembahasan Tentang Sudut-Sudut Dalam Sepihak
Pada Gambar di atas, garis p // q dan garis r memotong garis p dan q di titik R dan S.
- Tentukan pasangan sudut-sudut dalam sepihak.
- Jika ∠S1 = 120°, tentukan ∠R2 dan ∠R3.
Penyelesaian:
- Berdasarkan gambar di samping diperoleh
∠R2 dalam sepihak dengan ∠S1;
∠R3 dalam sepihak dengan ∠S4.
- Jika ∠S1 = 120° maka
∠R2 + ∠S1 = 180° (dalam sepihak)
∠R2 = 180° – ∠S1
∠R2 = 180° – 120°
∠R2 = 60°
∠R3 =∠S1 (dalam berseberangan)
∠R3 = 120°
Sekarang perhatikan gambar di bawah ini.
Perhatikan kembali ∠P1 dengan ∠Q4 dan ∠P2 dengan ∠Q3 pada Gambar di atas. Pasangan sudut tersebut disebut sudut-sudut luar sepihak. Akan kita buktikan bahwa: ∠P1 + ∠Q4 = 180°.
∠ P1 + ∠ P4 = 180o (berpelurus)
Padahal ∠ P4 = ∠ Q4 (sehadap).
Terbukti bahwa ∠ P1 + ∠ Q4 = 180°.
Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut luar sepihak adalah 180°.
Artikel Paling Populer :
- Cara Menyatakan Hubungan Antara Dua Pecahan cara menentukan pecahan senilai. Dengan menggunakan konsep pecahan senilai kita akan bisa menyatakan hubungan antara dua pecahan. Cara menyatakan hubungan antara dua pecahan hampir sama seperti menyatakan hubungan antara dua bilangan…
- Dinamika Partikel Ada yang sudah mengenal atau pernah mendengar mengenai istilah Dinamika Partikel? Simak penjelasan terlengkapnnya di bawah ini. Pengertian Dinamika Partikel Dinamika partikel merupakan suatu ilmu yang membahas tentang gaya-gaya yang…
- Garis dan Sudut serta sifat-sifatnya Garis dan Sudut adalah bentuk dasar dalam geometri. Garis adalah gambar yang terdiri dari titik-titik tak terhingga yang membentang tanpa batas di kedua arah. Dengan kata lain, garis dibentuk oleh…
- Cara Menentukan Pecahan yang Nilainya di Antara Dua Pecahan Untuk menentukan pecahan yang nilainya di antara dua pecahan silahkan simak penjelasan berikut ini. Misalkan kita memiliki bilangan pecahan 1/3 dan 2/3. Sekarang coba pikirkan, apakah ada bilangan pecahan yang…
- Sifat-Sifat Segitiga Istimewa sekarang akan membahas sifat-sifat segitiga secara spesifik yaitu segitiga istimewa. Apa itu segitiga istimewa dan bagaimana sifat-sifatnya? Segitiga istimewa adalah segitiga yang mempunyai sifat-sifat khusus (istimewa). Dalam hal ini ada…
- Fungsi rectangle tool pada CorelDraw adalah Fungsi rectangle tool pada CorelDraw adalah... A. Membuat elips atau lingkaran B. Membuat bayangan C. Membuat efek blury D. Membuat garis E. Membuat gambar berbentuk kotak Jawaban : E. Membuat…
- Cara Mengubah Pecahan Biasa Menjadi Pecahan Campuran Perlu kita ketahui bahwa bilangan pecahan campuran merupakan bilangan yang terdiri dari bilangan bulat dan bilangan pecahan. Untuk memahami cara mengubah pecahan biasa menjadi pecahan campuran atau dari pecahan campuran menjadi pecahan biasa,…
- Medan Magnet Zat yang mengandung besi, seperti serbuk besi, akan tertarik pada magnet batang dan berjajar untuk menunjukkan arah garis gaya dari medan magnet tersebut. Untuk lebih jelas mengenai Medan Magnet, simak…
- Dash merupakan jenis ketebalan garis berbentuk Dash merupakan jenis ketebalan garis berbentuk... A. Berpola B. Tidak putus C. Titik-titik D. Putus-putus E. Horizontal Jawaban : D. Putus-putus
- Hubungan Antar Himpunan Setelah mempelajari mengenai himpunan dan cara menyatakan suatu himpunan pada postingan sebelumnya, pada postingan ini kalian akan mempelajari hubungan antarhimpunan. Sekarang perhatikan contoh dua himpunan berikut ini ! A = {burung, ayam, bebek} dan…
- Sifat-Sifat Garis Sejajar Pada gambar di bawah ini, melalui dua buah titik yaitu titik A dan titik B dapat dibuat tepat satu garis, yaitu garis m. Selanjutnya, apabila dari titik C di luar…
- Pengertian Garis Bujur, Fungsi, Pembagian Waktu dan… Pengertian Garis Bujur, Fungsi, Pembagian Waktu dan Garis Bujur Indonesia Lengkap – Garis Bujur (λ) adalah garis imajiner atau garis khayal yang ditarik dari kutub utara ke kutub selatan maupun sebaliknya.…
- Pengertian, Hubungan Massa Dengan Dinamika Partikel… Pengertian Dinamika Partikel, Hubungan Massa Dengan Dinamika Partikel dan Jenis Gaya Dalam Dinamika Partikel Terlengkap – Dinamika partikel merupakan ilmu yang mempelajari tentang gaya-gaya yang megakibatkan suatu partikel yang pada…
- Kedudukan Dua Garis (Sejajar, Berpotongan, Berimpit,… Dua garis sejajar Pernahkah Anda memerhatikan rel atau lintasan kereta api? Apabila kita perhatikan lintasan kereta api tersebut, jarak antara dua rel akan selalu tetap (sama) dan tidak pernah saling…
- Kubus – Unsur-Unsur Kubus, Jaring-Jaring, Rumus dan… Kubus – Unsur-Unsur Kubus, Sifat-Sifat Kubus, Jaring-Jaring, Rumus dan Contoh Soal Lengkap – Kubus adalah bangun ruang tiga dimensi yang dibatasi oleh enam bidang kongruen berbentuk bujur sangkar atau persegi. Ciri-ciri…
- Pengertian, Rumus dan Contoh Soal Cara Menghitung… Pengertian, Rumus dan Contoh Soal Cara Menghitung Medan Listrik dan Kuat Medan Listrik Lengkap – Medan listrik adalah efek yang ditimbulkan oleh adanya muatan listrik, seperti elektron, ion atau proton dalam…
- Alat yang berfungsi untuk membentuk beragam garis… Alat yang berfungsi untuk membentuk beragam garis lurus atau garis tidak beraturan adalah... A. Freehand B. Painbucket C. Eyedropper D. Bezier rool E. Pen tool Jawaban : A. Freehand
- Straight merupakan jenis ketebalan garis berbentuk Straight merupakan jenis ketebalan garis berbentuk... A. Berpola B. Tidak putus C. Titik-titik D. Vertikal E. Horizontal Jawaban : B. Tidak putus
- Rumus Layang-Layang : Pengertian, Sifat, Menghitung… Rumus Luas dan Keliling Layang-Layang – Bangun layang-layang adalah? Apa rumus layang-layang? Sebutkan sifat-sifat layang-layang! Agar lebih memahaminya, kali ini kita akan membahas tentang pengertian bangun layang-layang, sifat, gambar, rumus, contoh…
- 8 Macam Unsur dalam Seni Rupa dan Pengertiannya… Mengetahui Pengertian dan Macam Unsur-Unsur Dalam Seni Rupa Lengkap dengan Penjelasannya Seni rupa atau sering disebut dengan visual art merupakan salah satu cabang seni yang hasil karyanya dapat dinikmati dengan indera penglihatan…