Dioda: Pengertian, Fungsi, Prinsip Kerja, Contoh Dan Jenis Dioda

Dioda : Pengertian, Fungsi, Prinsip Kerja, Contoh Dan Jenis – Salah satu komponen lain yang penting dalam elektronika adalah diodaDioda adalah merupakan peranti semikonduktor yang dasar. Dioda memiliki banyak tipe dan tiap tipe memiliki fungsi dan karakteristik masing-masing. Dioda merupakan komponen yang paling sederhana pada kelompok semikonduktor.


Kata “dioda” adalah sebuah kata majemuk yang berarti “dua elektroda”, dimana “di” berarti dua dan “oda” yang berarti elektroda. Jadi dioda adalah dua lapisan elektroda N (katoda) dan lapisan P (anoda), dimana N berarti negatif dan P adalah positif. Dioda terbagi menjadi beberapa bagian, salah satu nya adalah dioda zener, germanium dan dioda silikon.


Dioda


Pengertian DIODA Menurut Para Ahli

Daftar Baca Cepat  tampilkan 
  • Dioda adalah piranti elektronik yang hanya dapat melewatkan arus/tegangan dalam satu arah saja, dimana dioda merupakan jenis VACUUM tube yang memiliki dua buah elektroda. Karena itu, dioda dapat dimanfaatkan sebagai penyearah arus listrik, yaitu piranti elektronik yang mengubah arus atau tegangan bolak-balik (AC) menjadi arus atau tegangan searah (DC).  Dioda jenis VACUUM tube pertama kali diciptakan oleh seorang ilmuwan dari Inggris yang bernama Sir J.A. Fleming (1849-1945) pada tahun 1904.

  • Dioda daya umumnya digunakan sebagai penyearah arus/tegangan (rectifier) dengan karakteristik puncak tegangannya maksimum dan arus maju maksimum. Dioda daya pada umumnya terbuat dari bahan silikon.

  • Dioda daya merupakan salah satu komponen semikonduktor yang banyak digunakan dalam rangkaian elektronika daya seperti pada rangkaian penyearah, freewheeling (bypass) pada regulator-regulator penyakelaran, rangkaian pemisah, rangkaian umpan balik dari beban ke sumber, dan lain-lain. Dalam penerapannya, seringkali dioda daya dianggap sebagai saklar ideal walaupun dalam prakteknya ada perbedaan.

  • Dalam berbagai rangkaian elektronika komponen semikonduktor dioda sering kita jumpai jenis dan type yang berbeda beda tergantung dari model dan tujuan penggunaan rangkaian tersebut dibuat. Dioda merupakan komponen semiconductor yang paling sederhana. Kata dioda berasal dari pendekatan kata yaitu dua elektroda yang mana (di berarti dua) mempunyai dua buah elektroda yaitu anoda dan katoda.

Sejarah Dioda

Walaupun diode kristal (semikonduktor) dipopulerkan sebelum diode termionik, diode termionik dan diode kristal dikembangkan secara terpisah pada waktu yang bersamaan. Prinsip kerja dari diode termionik ditemukan oleh Frederick Guthrie pada tahun 1873 Sedangkan prinsip kerja diode kristal ditemukan pada tahun 1874 oleh peneliti Jerman, Karl Ferdinand Braun.


Pada waktu penemuan, peranti seperti ini dikenal sebagai penyearah (rectifier). Pada tahun 1919, William Henry Eccles memperkenalkan istilah diode yang berasal dari di berarti dua, dan ode (dari δος) berarti “jalur”.

dioda semikonduktor
berbagai dioda semikonduktor

  • Konstruksi Dioda

Dioda terbentuk dari bahan semikonduktor tipe P dan N yang digabungkan. Dengan demikian dioda sering disebut PN junction. Dioda adalah gabungan bahan semikonduktor tipe N yang merupakan bahan dengan kelebihan elektron dan tipe P adalah kekurangan satu elektron sehingga membentuk Hole. Hole dalam hal ini berfungsi sebagai pembawa muatan. Apabila kutub P pada dioda (anoda) dihubungkan dengan kutub positif sumber maka akan terjadi pengaliran arus listrik dimana elektron bebas pada sisi N (katoda) akan berpindah mengisi hole sehingga terjadi pengaliran arus.


Sebaliknya apabila sisi P dihubungkan dengan negatif baterai/sumber, maka elektron akan berpindah ke arah terminal positif sumber. Didalam dioda tidak akan terjadi perpindahan elektron.


Konstruksi dioda daya sama dengan dioda-dioda sinyal sambungan PN. Bedanya adalah dioda daya mempunyai kapasitas daya (arus dan tegangan) yang lebih tinggi dari dioda-dioda sinyal biasa, namun kecepatan penyaklarannya lebih rendah.


Dioda daya merupakan komponen semikonduktor sambungan PN yang mempunyai dua terminal sebagaimana dioda pada umumnya, yaitu terminal anoda (A) dan katoda (K).


      Simbol Dan Konstruksi Dioda

Simbol Dan Konstruksi Dioda

Sisi Positif (P) disebut Anoda dan sisi Negatif (N) disebut Katoda. Lambang dioda seperti anak panah yang arahnya dari sisi P ke sisi N. Karenanya ini mengingatkan kita pada arus konvensional dimana arus mudah mengalir dari sisi P ke sisi N.


  • Prinsip Kerja Dioda

Prinsip kerja diode termionik ditemukan kembali oleh Thomas Edison pada 13 Februari 1880 dan dia diberi hak paten pada tahun 1883 (U.S. Patent 307.031), namun tidak dikembangkan lebih lanjut. Braun mematenkan penyearah kristal pada tahun 1899. Penemuan Braun dikembangkan lebih lanjut oleh Jagdish Chandra Bose menjadi sebuah peranti berguna untuk detektor radio.


Dioda terbentuk dari bahan semikonduktor tipe P dan N yang digabungkan. Dengan demikian dioda sering disebut PN junction. Dioda adalah gabungan bahan semikonduktor tipe N yang merupakan bahan dengan kelebihan elektron dan tipe P adalah kekurangan satu elektron sehingga membentuk Hole. Hole dalam hal ini berfungsi sebagai pembawa muatan.


Apabila kutub P pada dioda (biasa disebut anode) dihubungkan dengan kutub positif sumber maka akan terjadi pengaliran arus listrik dimana elektron bebas pada sisi N (katode) akan berpindah mengisi hole sehingga terjadi pengaliran arus.


Sebaliknya apabila sisi P dihubungkan dengan negatif baterai / sumber, maka elektron akan berpindah ke arah terminal positif sumber. Didalam dioda tidak akan terjadi perpindahan elektron.


Jenis – Jenis Dioda Semikonduktor

Ada beberapa jenis dari diode pertemuan yang hanya menekankan perbedaan pada aspek fisik baik ukuran geometrik, tingkat pengotoran, jenis elektrode ataupun jenis pertemuan, atau benar-benar peranti berbeda seperti diode Gunn, diode laser dan diode MOSFET.


  • Dioda Biasa

Beroperasi seperti penjelasan di atas. Biasanya dibuat dari silikon terkotori atau yang lebih langka dari germanium. Sebelum   pengembangan diode penyearah silikon modern, digunakan kuprous oksida (kuprox) dan selenium, pertemuan ini memberikan efisiensi yang rendah dan penurunan tegangan maju yang lebih tinggi (biasanya 1.4–1.7 V tiap pertemuan, dengan banyak lapisan pertemuan ditumpuk untuk mempertinggi ketahanan terhadap tegangan terbalik), dan memerlukan benaman bahan yang besar (kadang-kadang perpanjangan dari substrat logam dari dioda), jauh lebih besar dari diode silikon untuk rating arus yang sama.

anoda dan katoda


  • Dioda Bandangan

Dioda yang menghantar pada arah terbalik ketika tegangan panjar mundur melebihi tegangan dadal dari pertemuan P-N. Secara listrik mirip dan sulit dibedakan dengan dioda Zener, dan kadang-kadang salah disebut sebagai dioda Zener, padahal dioda ini menghantar dengan mekanisme yang berbeda yaitu efek bandangan. Efek ini terjadi ketika medan listrik terbalik yang membentangi pertemuan p-n menyebabkan gelombang ionisasi pada pertemuan, menyebabkan arus besar mengalir melewatinya, mengingatkan pada terjadinya bandangan yang menjebol bendungan.


Dioda bandangan didesain untuk dadal pada tegangan terbalik tertentu tanpa menjadi rusak. Perbedaan antara diode bandangan (yang mempunyai tegangan dadal terbalik diatas 6.2 V) dan dioda Zener adalah panjang kanal yang melebihi rerata jalur bebas dari elektron, jadi ada tumbukan antara mereka. Perbedaan yang mudah dilihat adalah keduanya mempunyai koefisien suhu yang berbeda, diode bandangan berkoefisien positif, sedangkan Zener berkoefisien negatif.


  • Dioda Cat’s Whisker

Ini adalah salah satu jenis dioda kontak titik. Dioda cat’s whisker terdiri dari kawat logam tipis dan tajam yang ditekankan pada kristal semikonduktor, biasanya galena atau sepotong  batu bara. Kawatnya membentuk anode dan kristalnya membentuk katode. Dioda Cat’s whisker juga disebut diode kristal dan digunakan pada penerima radio kristal.


  • Dioda Arus Tetap

Ini sebenarnya adalah sebuah JFET dengan kaki gerbangnya disambungkan langsung ke kaki sumber, dan berfungsi seperti pembatas arus dua saluran (analog dengan Zener yang membatasi tegangan). Peranti ini mengizinkan arus untuk mengalir hingga harga tertentu, dan lalu menahan arus untuk tidak bertambah lebih lanjut.


  • Esaki atau Dioda Terobosan

Dioda ini mempunyai karakteristik resistansi negatif pada daerah operasinya yang disebabkan oleh quantum tunneling, karenanya memungkinkan penguatan isyarat dan sirkuit dwimantap sederhana. Dioda ini juga jenis yang paling tahan terhadap radiasi radioaktif.


  • Dioda Gunn

Dioda ini mirip dengan diode terowongan karena dibuat dari bahan seperti GaAs atau InP yang mempunyai daerah resistansi negatif. Dengan panjar yang semestinya, domain dipol terbentuk dan bergerak melalui dioda, memungkinkan osilator gelombang mikro frekuensi tinggi dibuat.


  • Demodulasi Radio

Penggunaan pertama dioda adalah demodulasi dari isyarat radio modulasi amplitudo (AM). Dioda menyearahkan isyarat AM frekuensi radio, meninggalkan isyarat audio. Isyarat audio diambil dengan menggunakan tapis elektronik sederhana dan dikuatkan.


  • Penyearah Arus

Penyearah arus dibuat dari dioda, dimana dioda digunakan untuk mengubah arus bolak-balik (AC) menjadi arus searah (DC). Contoh yang paling banyak ditemui adalah pada rangkaian adaptor. Pada adaptor, diode digunakan untuk menyearahkan arus bolak-balik menjadi arus searah. Sedangkan contoh yang lain adalah alternator otomotif, dimana diode mengubah AC menjadi DC dan memberikan performansi yang lebih baik dari cincin komutator dari dinamo DC.

Beberapa jenis dioda


Karakteristik Dioda Dan Cara Kerjanya

Untuk dapat memahami bagaimana cara kerja dioda pada rangkaian Elektronik kita dapat meninjau 3 situasi sebagai berikut ini yaitu :

1. Dioda diberi tegangan nol
2. Dioda diberi tegangan negatif
3. Dioda diberi tegangan positif


  • Dioda Diberi Tegangan Nol

Dioda Diberi Tegangan Nol

Ketika dioda diberi tegangan nol maka tidak ada medan listrik yang menarik elektron dari katoda. Elektron yang mengalami pemanasan pada katoda hanya mampu melompat sampai pada posisi yang tidak begitu jauh dari katoda dan membentuk muatan ruang (Space Charge).


Tidak mampunya elektron melompat menuju katoda disebabkan karena energi yang diberikan pada elektron melalui pemanasan oleh heater belum cukup untuk menggerakkan elektron menjangkau plate.

  • Dioda Diberi Tegangan Negatif

Dioda Diberi Tegangan Negatif

  • Dioda Diberi Tegangan Positif

Dioda Diberi Tegangan Positif


Ketika dioda diberi tegangan positif maka potensial positif yang ada pada plate akan menarik elektron yang baru saja terlepas dari katoda oleh karena emisi thermionic, pada situasi inilah arus listrik baru akan terjadi. Seberapa besar arus listrik yang akan mengalir tergantung daripada besarnya tegangan positif yang dikenakan pada plate. Semakin besar tegangan plate akan semakin besar pula arus listrik yang akan mengalir.


Oleh karena sifat dioda yang seperti ini yaitu hanya dapat mengalirkan arus listrik pada situasi tegangan tertentu saja, maka dioda dapat digunakan sebagai penyearah arus listrik (rectifier). Pada kenyataannya memang dioda banyak digunakan sebagai penyearah tegangan AC menjadi tegangan DC pada rangkaian Elektronik.


Hampir semua peralatan Elektronika memerlukan sumber arus searah. Penyearah digunakan untuk mendapatkan arus searah dari suatu arus bolak-balik. Arus atau tegangan tersebut harus benar-benar rata tidak boleh berdenyut-denyut agar tidak menimbulkan gangguan bagi peralatan yang dicatu.


Dioda sebagai salah satu komponen aktif sangat popular digunakan dalam rangkaian Elektronika, karena bentuknya sederhana dan penggunaannya sangat luas. Ada beberapa macam rangkaian dioda, diantaranya : penyearah setengah gelombang (Half-Wave Rectifier), penyearah gelombang penuh (Full-Wave Rectifier), rangkaian pemotong (Clipper), rangkaian penjepit (Clamper) maupun pengganda tegangan (Voltage Multiplier). Di bawah ini merupakan gambar yang melambangkan dioda penyearah.

Sisi Positif (P) disebut Anoda dan sisi Negatif (N) disebut Katoda
Sisi Positif (P) disebut Anoda dan sisi Negatif (N) disebut Katoda

Sisi Positif (P) disebut Anoda dan sisi Negatif (N) disebut Katoda. Lambang dioda seperti anak panah yang arahnya dari sisi P ke sisi N. Karenanya ini mengingatkan kita pada arus konvensional dimana arus mudah mengalir dari sisi P ke sisi N.


DIODA PENYEARAH

MENGENAL DIODA PENYEARAH


PENGERTIAN RECTIFIER (PENYEARAH GELOMBANG) DAN JENIS-JENISNYA

  • Rectifier atau dalam bahasa Indonesia disebut dengan Penyearah Gelombang adalah suatu bagian dari Rangkaian Catu Daya atau Power Supply yang berfungsi sebagai pengubah sinyal AC (Alternating Current) menjadi sinyal DC (Direct Current). Rangkaian Rectifier atau Penyearah Gelombang ini pada umumnya menggunakan Dioda sebagai KomponenUtamanya.

Penerapan Dioda dalam Rangkaian Penyearah

Karena sebuah dioda sambungan PN hanya dapat mengalirkan arus listrik dalam satu arah, maka dioda dapat dimanfaatkan sebagai penyearah untuk mengubah arus bolak-balik (AC) menjadi arus searah (DC). Ada dua jenis penyearah yang kita pelajari, yaitu penyearah setengah-gelombang dan penyearah gelombang penuh.


  • Penyearah setengah gelombang (half wave rectifier circuit)

Rangkaian penyearah yang paling sederhana adalah penyearah setengah gelombang, terdiri dari sebuah dioda yang dipasang pada sisi sekunder sebuah trafo dan diserikan dengan sebuah beban R, seperti pada gambar penyearah setengah gelombang. Tegangan searah yang dibutuhkan oleh beban, seperti lampu, relay, bateray, dll. Transformator mengubah tegangan bolak balik tertentu menjadi tegangan sesuai untuk disearahkan.

Rangkaian Penyearah setengah gelombang


Tegangan sisi sekunder trafo, merupakan tegangan masukan untuk rangkaian penyearah setengah gelombang. Tegangan masukan ini adalah tegangan bolak balik yang berbentuk sinusoida. Dalam satu periode, polaritas tegangan positif dan negatif berubah secara bergantian. Kita hanya meninjau satu periode gelombang saja, yaitu setengah periode positif dan setengah periode negatif.


Dalam setengah periode positif, dioda diberi panjar maju (anoda (A) berhubungan dengan polaritas positif dan katoda (K) berhubungan dengan polaritas negatif), sehingga dioda akan mengalirkan arus melalui beban R. Untuk beban yang dianggap resistif murni R, tegangan keluaran atau ujung-ujung beban sama dengan tegangan masukan. Karena itu, bentuk teganga keluaran sama dengan setengah gelombang tegangan.


Dalam setengah periode negatif berikutnya, dioda diberi panjar mundur (anoda (A) berhubungan dengan polaritas negatif dan katoda (K) berhubungan dengan polaritas positif), sehingga dioda tidak akan mengalirkan arus melalui beban R. Ini mengakibatkan tegangan keluaran antara ujung-ujung beban sama dengan nol, dan digambarkan dengan garis lurus mendatar seperti pada gambar bawah.


Bentuk gelombang tegangan keluaran pada rangkaian penyearah setengah gelombang ditunjukkan pada gambar bawah. Karena menghasilkan tegangan keluaran searah hanya dalam setengah periode positif dari gelombang tegangan masukan, maka penyearah ini disebut penyearah setengah gelombang.


Bentuk sinyal output penyearah setengah gelombang

  • Penyearah Gelombang Penuh (full wave rectifier circuit)

Agar dapat mengalirkan arus dalam satu gelombang penuh sehingga tegangan keluaran lebih mudah diratakan dan dapat menghasilkan nilai konstan, kita gunakan penyearah gelombang penuh. Penyearah gelombang-penuh dapat menggunakan empat dioda yang dihubungkan seperti jembatan wheatstone, disebut juga penyearah jembatan, seperti pada gambar rangkaian di bawah ini.


Rangkaian penyearah Gelombang Penuh

Penyearah jembatan selalu hanya sepasang dioda yang mengalirkan arus melalui beban R, sedang sepasang dioda lainnya tidak. Dalam rangkaian ini, pasangan dioda adalah D1 dengan D4, dan D2 dengan D3. (secara sederhana pasangan dioda ditunjukkan oleh dioda-dioda yang arah panahnya sejajar).


Dalam setengah periode positif, pasangan dioda D2 dan D3 dipanjar maju, sedangkan pasangan dioda D1 dan D4 dipanjar mundur. Arus listrik akan mengalir dari tegangan masukan melalui pasangan dioda D2 dan D3 dan beban R dengan arah dari a ke b. Jadi, dalam periode ini, tegangan keluaran sama dengan tegangan masukan.


Dalam setengah periode negatif, pasangan dioda D4 dan D1 dipanjar maju sedang pasangan dioda D2 dan D3 dipanjar mundur. Arus listrik akan mengalir dari tegangan masukan melalui pasangan dioda D1 dan D4 dan beban R, dengan arah yang sama dari a ke b, seperti pada gambar. Dapat kita katakan bahwa tegangan masukan yang bernilai negatif dijadikan positif pada keluaran. Selanjutnya, bentuk gelombang tegangan masukan dan tegangan keluaran ditunjukkan pada gambar di bawah.


Bentuk sinyal output penyearah gelombang penuh

Oleh karena itu penyearah jembatan menghasilkan tegangan keluaran searah untuk satu periode gelombang tegangan masukan yang diberikan padanya, maka penyearah jembatan disebut juga penyearah gelombang penuh.


  • Penyearah sistem jembatan (bridge rectifier circuit)

Adalah penyearah dengan memanfaatkan topologi dioda yang disusun dengansistem jembatan. Sistem ini mengambil semua siklus gelombang sinus masukan namundengan input fasa tunggal. Sistem lebih efisien pada sistem power supply denganinput fasa tunggal karena menghemat penggunaan lilitan.


Penyearah sistem jembatan memanfaatkan kerja forward secara bergantian pada masing-masing dioda yang dimanfaatkan pada masing-masing siklus. Pada siklus positif, diodapertama dan kedua bekerja secara forward lalu pada siklus negatif, dioda ketiga dankeempat yang ganti bekerja secara forward. Sistem ini dianggap paling baik dan populeruntuk aplikasi penyearah tegangan tunggal pada sinyal sinus dengan frekuensi rendah sepertipada listrik rumah tangga.


  • Prinsip Perataan Penyearah Gelombang Penuh

Tegangan searah yang dihasilkan oleh penyearah setengah gelombang maupun penyearah jembatan (gelombang penuh) memiliki riak yang cukup besar (gelombang tegangan tidak rata). Tegangan searah seperti ini tidak memenuhi syarat untuk diberikan kepada komponen-komponen elektronika yang terdapat dalam radio, televisi dan komputer, yang membutuhkan tegangan searah yang lebih rata.

Baca Juga :  Sistem Gerak Manusia

Secara sederhana tegangan searah dapat diratakan dengan memasang sebuah kapasitor elektrolit kapasitas besar, paralel dengan beban R, seperti pada gambar rangkaian sistem perataan di bawah ini.

Rangkaian Penyearah Gelombang Penuh berfilter


Rangkaian system perataan kapasitor ini disebut kapasitor perata atau kapasitor penyimpan (reservoir circuit). Sewaktu tegangan pada ujung-ujung beban naik terhadap waktu antara A dan B, kapasitor C dimuati sedemikian rupa sehingga polaritas pelat atasnya positif. Sesaat setelah tegangan keluaran penyearah antara B dan C berkurang, kapasitas C membuang muatan listriknya melalui beban R.


sebagai hasilnya, tegangan pada ujung-ujung beban tidak pernah mencapai nol, tetapi mengikuti lintasan garis tebal. Tampak bahwa riak gelombang tegangan menjadi lebih kecil dan tegangan searah yang dihasilkan pada ujung-ujung beban adalah agak lebih rata.


Karakteristik Dan Aplikasi Dioda Zener

Pengertian Dioda Zener

Dioda Zener adalah dioda yang memiliki karakteristik menyalurkan arus listrik mengalir ke arah yang berlawanan jika tegangan yang diberikan melampaui batas “tegangan tembus” (breakdown voltage) atau “tegangan Zener”. Ini berlainan dari dioda biasa yang hanya menyalurkan arus listrik ke satu arah.


Dioda Zener

Dioda yang biasa tidak akan mengalirkan arus listrik untuk mengalir secara berlawanan jika dicatu-balik (reverse-biased) di bawah tegangan rusaknya. Jika melampaui batas tegangan operasional, diode biasa akan menjadi rusak karena kelebihan arus listrik yang menyebabkan panas.


Namun proses ini adalah reversibel jika dilakukan dalam batas kemampuan. Dalam kasus pencatuan-maju (sesuai dengan arah gambar panah), diode ini akan memberikan tegangan jatuh (drop voltage) sekitar 0.6 Volt yang biasa untuk diode silikon. Tegangan jatuh ini tergantung dari jenis diode yang dipakai.


Sebuah dioda Zener memiliki sifat yang hampir sama dengan diode biasa, kecuali bahwa alat ini sengaja dibuat dengan tegangan tembus yang jauh dikurangi, disebut tegangan Zener. Sebuah dioda Zener memiliki p-n junction yang memiliki doping berat, yang memungkinkan elektron untuk tembus (tunnel) dari pita valensi material tipe-p ke dalam pita konduksi material tipe-n. Sebuah dioda Zener yang dicatu-balik akan menunjukan perilaku tegangan tembus yang terkontrol dan akan melewatkan arus listrik untuk menjaga tegangan jatuh supaya tetap pada tegangan Zener.


Sebagai contoh, sebuah dioda Zener 3.2 Volt akan menunjukan tegangan jatuh pada 3.2 Volt jika diberi catu-balik. Namun, karena arusnya terbatasi, sehingga diode Zener biasanya digunakan untuk membangkitkan tegangan referensi, untuk menstabilisasi tegangan aplikasi-aplikasi arus kecil, untuk melewatkan arus besar diperlukan rangkaian pendukung IC atau beberapa transistor sebagai output.


Tegangan tembusnya dapat dikontrol secara tepat dalam proses doping. Toleransi dalam 0.05% bisa dicapai walaupun toleransi yang paling biasa adalah 5% dan 10%.

Efek ini ditemukan oleh seorang fisikawan Amerika, Clarence Melvin Zener.


Mekanisme lainnya yang menghasilkan efek yang sama adalah efek avalanche, seperti di dalam diode avalanche. Kedua tipe diode ini sebenarnya dibentuk melalui proses yang sama dan kedua efek sebenarnya terjadi di kedua tipe diode ini. Dalam diode silikon, sampai dengan 5.6 Volt, efek Zener adalah efek utama dan efek ini menunjukan koefisiensi temperatur yang negatif. Di atas 5.6 Volt, efek avalanche menjadi efek utama dan juga menunjukan sifat koefisien temperatur positif.


Dalam dioda Zener 5.6 Volt, kedua efek tersebut muncul bersamaan dan kedua koefisien temperatur membatalkan satu sama lainnya. Sehingga, diode 5.6 Volt menjadi pilihan utama di aplikasi temperatur yang sensitif.


Teknik-teknik manufaktur yang modern telah memungkinkan untuk membuat diode-diode yang memiliki tegangan jauh lebih rendah dari 5.6 Volt dengan koefisien temperatur yang sangat kecil. Namun dengan munculnya pemakai tegangan tinggi, koefisien temperatur muncul dengan singkat pula. Sebuah diode untuk 75 Volt memiliki koefisien panas yang 10 kali lipatnya koefisien sebuah diode 12 Volt.


Kurva Karakteristik Dioda Zener

Semua diode di pasaran dijual dengan tanda tulisan atau kode voltase operasinya ditulis dipermukaan kristal diode , biasanya dijual dinamakan dioda Zener.


Kutub Dioda Zener

Karakteristik beberapa dioda zener

Karakteristik beberapa diode zener

Catatan

Uz        =Tegangan Zener

ID(ma)   = Arus Dioda Zener

ID(ohm) = Tahanan Dalam Zener


Jika dioda zener bekerja dalam daerah breakdown, dengan tambahan tegangan sedikit menghasilkan pertambahan arus yang besar. Ini menandakan bahwa dioda zener mempunyai impedansi yang kecil. Kita dapat menghitung impedansi dengan cara :


perubahan tegangan zener


Penerapan dioda zener yang paling penting adalah sebagai regulator atau stabilizer tegangan (voltage regulator). Rangkaian dasar stabilizer tegangan menggunakan dioda zener dapat dilihat pada gambar dibawah. Agar rangkaian ini dapat berfungsi dengan baik sebagai stabilizer tegangan, maka dioda zener harus bekerja pada daerah breakdown. Yaitu dengan memberikan tegangan sumber (Vi) harus lebih besar dari tegangan dioda zener (Vz).

Rangkaian Dasar Stabilizer dengan Dioda Zener


Pengaplikasian Dioda Zener Pada Rangkaian

Dioda banyak diaplikasikan pada rangkaian penyearah arus (rectifier) power suplai atau konverter AC ke DC. Di pasar banyak ditemukan dioda seperti 1N4001, 1N4007 dan lain-lain. Masing-masing tipe berbeda tergantung dari arus maksimum dan juga tegangan breakdown-nya.


Zener banyak digunakan untuk aplikasi regulator tegangan (voltage regulator). Zener yang ada dipasaran tentu saja banyak jenisnya tergantung dari tegangan breakdown-nya. Di dalam datasheet biasanya spesifikasi ini disebut Vz (zener voltage) lengkap dengan toleransinya, dan juga kemampuan dissipasi daya.

LED Array


LED sering dipakai sebagai indikator yang masing-masing warna bisa memiliki arti yang berbeda. Menyala, padam dan berkedip juga bisa berarti lain. LED dalam bentuk susunan (array) bisa menjadi display yang besar. Dikenal juga LED dalam bentuk 7 segment atau ada juga yang 14 segment. Biasanya digunakan untuk menampilkan angka numerik dan alphabet.

LED dalam bentuk 7 segment atau ada juga yang 14 segment

  • Voltage Regulator

Dioda Zener biasanya diaplikasikan yang paling penting adalah sebagai regulator atau stabilizer tegangan (voltage regulator). Rangkaian dasar stabilizer tegangan menggunakan dioda zener dapat dilihat pada gambar dibawah. Agar rangkaian ini dapat berfungsi dengan baik sebagai stabilizer tegangan, maka dioda zener harus bekerja pada daerah breakdown. Yaitu dengan memberikan tegangan sumber (Vi) harus lebih besar dari tegangan dioda zener (Vz).


Rangkaian regulator tegangan sederhana dengan dioda zener

Rangkaian regulator tegangan dengan dioda zener

Daya yg diserepa oleh zener adalah

  • Rangkaian penyearah arus listrik dari AC ke DC

Rangkaian penyearah arus listrik dari AC ke DC

  • Rangkaian regulator tegangan

Rangkaian regulator tegangan

Implementasi diode sebagai pelipat ganda frekuensi. misal frekuensi input 50 Hz maka output menjadi 100 Hz.


  • Dioda sebagai pencampur sinyal

Diode sebagai pencampur sinyal

  • Implementasi LED

Implementasi LED

  • Dioda sebagai saklar (Switch)

Dioda sebagai saklar (Switch)


Karakteristik Dan Aplikasi Dioda Germanium

Dioda germanium memiliki arus bocor yang lebih besar daripada dioda silikon.  Pada suhu ruang germanium akan memiliki 1000 pembawa minoritas dari silikon. Sehingga dioda silikon lebih banyak disukai. Akan tetapi dioda germanium juga mempunyai kelebihan dari dioda silikon yaitu memiliki tegangan “turn on” yang rendah dan resistansinya lebih rendah. Untuk aplikasi tertentu dioda germanium masih dipakai.

Dioda Germanium


Karakteristik Sambungan pn Hubungan arus dan tegangan pada diode sambungan pn dinyatakan dengan persamaan :

I =I0 ( e V/h VT – 1)

Dengan Io = Arus balik Jenuh

h = 1 untuk germanium dan 2 untuk silikon

VT = 1 / 11600 ( kesetaraan volt dalam suhu )

= 0,026 volt pada suhu kamar T = 300 K


Karakteristik maju diode pn untuk germanium dan silikon terlihat pada gambar. Terlihat ada tegangan ambang Vf. Dibawah tegangan ambang arus diode sangat kecil. Tegangan ambang besarnya kira-kira 0,2 V untuk Germanium dan 0,6 volt untuk silikon.


Prasikap balik yang besar (VZ), terjadi arus balik yang mendadak besar. Didaerah ini diode dikatakan berada didaerah.

Pengaruh suhu. Pengaruh suhu terhadap perubahan Io adalah kira-kira 7% / oC. Karena (1,07) 10 = 2, maka arus Io menjadi berlipat dua untuk setiap kenaikan 10 oC.

Arsu Io pada suhu T adalah :
Io (T) =Io1 x 2 (T-T1)/10

Dengan Io1 : Arus Io pada suhu T1.


Kapasitansi Transisi. Prasikap balik mengakibatkan pembawaan mayoritas menjauhi sambungan, maka daerah defleksi menjadi lebar. Dapat dianggap ada pengaruh kapasitansi transisi C

Dioda germanium mempunyai katakteristik atau sifat diantaranya :

  • Bentuk fisiknya kecil
  • Digunakan untuk rangkaian yg power outputnya besar
  • Tahan terhadap tegangan tinggi max 500 volt
  • Tahan terhadap arus besar max 10 ampere
  • Tegangan yg hilang hanya 0,7 volt saja.

Karakteristik Dan Aplikasi Dioda Silikon

Dioda Silikon

Dioda silikon banyak digunakan pada peralatan catu daya sebagai penyearah arus, pengaman tegangan kejut dan sebagainya. Contoh : 1N4001, 1N4007, 1N5404 dan lain-lain.


Dioda penyearah adalah jenis dioda yang terbuat dari bahan Silikon yang berfungsi sebagai penyearah tegangan / arus dari arus bolak-balik (ac) ke arus searah (DC) atau mengubah arus AC menjadi DC. Secara umum dioda ini disimbolnya.

Simbol dioda silikon

Dioda silikon mempunyai karakteristik atau sifat sebagai berikut :

  1. Bentuk fisiknya kecil
  2. Sering di pakai dalam rangkaian adaptor sebagai perata arus, dapat juga digunakan sebagai saklar elektronik
  3. Tahan terhadap arus besar max sekitar 150 ampere
  4. Tahan terhadap tegangan tinggi max 1000 volt


  • Kesimpulan

Berdasarkan paparan di atas dapat disimpulkan bahwa dioda berfungsi sebagai penyearah (rectifier) untuk mengubah tegangan bolak-balik (AC) menjadi tegangan searah (DC). Dioda menjadi sangat penting karena hampir semua peralatan elektronika memerlukan sumber arus searah (DC).


Dioda daya umumnya digunakan sebagai penyearah arus/tegangan (rectifier) dengan karakteristik puncak tegangannya maksimum dan arus maju maksimum. Dioda daya pada umumnya terbuat dari bahan silikon.


Dioda daya merupakan salah satu komponen semikonduktor yang banyak digunakan dalam rangkaian elektronika daya seperti pada rangkaian penyearah, freewheeling (bypass) pada regulator-regulator penyakelaran, rangkaian pemisah, rangkaian umpan balik dari beban ke sumber, dan lain-lain. Dalam penerapannya, seringkali dioda daya dianggap sebagai saklar ideal walaupun dalam prakteknya ada perbedaan.


Hampir semua peralatan elektronika memerlukan sumber arus searah. Penyearah digunakan untuk mendapatkan arus searah dari suatu arus bolak-balik. Arus atau tegangan tersebut harus benar-benar rata tidak boleh berdenyut-denyut agar tidak menimbulkan gangguan bagi peralatan yang dicatu.


Salah satu komponen lain yang penting dalam elektronika adalah dioda. Dioda adalah merupakan peranti semikonduktor yang dasar. Diode memiliki banyak tipe dan tiap tipe memiliki fungsi dan karakteristik masing-masing.


Dioda Zener adalah diode yang memiliki karakteristik menyalurkan arus listrik mengalir ke arah yang berlawanan jika tegangan yang diberikan melampaui batas “tegangan tembus” (breakdown voltage) atau “tegangan Zener”.


Dioda germanium mempunyai katakteristik atau sifat diantaranya :

  1. Bentuk fisiknya kecil
  2. Digunakan untuk rangkaian yg power outputnya besar
  3. Tahan terhadap tegangan tinggi max 500 volt
  4. Tahan terhadap arus besar max 10 ampere
  5. Tegangan yg hilang hanya 0,7 volt saja.

Dioda silikon mempunyai karakteristik atau sifat sebagai berikut :

  • Bentuk fisiknya kecil
  • Sering di pakai dalam rangkaian adaptor sebagai perata arus, dapat juga digunakan sebagai saklar elektronik
  • Tahan terhadap arus besar max sekitar 150 ampere
  • Tahan terhadap tegangan tinggi max 1000 volt

  • Saran

Apabila pembaca hendak menggunakan suatu dioda dalam suatu rangkaian baik itu dioda zener, germanium maupun silikon , sebaiknya pembaca melakukan pengecekan terlebih dahulu terhadap dioda tersebut.

pengecekan dioda