Sifat-Sifat Segitiga Istimewa

sekarang akan membahas sifat-sifat segitiga secara spesifik yaitu segitiga istimewa. Apa itu segitiga istimewa dan bagaimana sifat-sifatnya?

Segitiga istimewa adalah segitiga yang mempunyai sifat-sifat khusus (istimewa). Dalam hal ini ada tiga jenis segitiga istimewa yaitu segitiga siku-siku, segitiga sama kaki, dan segitiga sama sisi. Berikut ini akan kita bahas mengenai sifat-sifat dari segitiga istimewa tersebut.

Segitiga siku-siku
Sekarang coba perhatikan gambar di bawah ini.

Bangun ABCD merupakan persegi panjang dengan sudut A = sudut B = sudut C = sudut D = 90°. Jika persegi panjang ABCD dipotong menurut diagonal AC akan terbentuk dua buah bangun segitiga, yaitu ΔABC dan ΔADC seperti gambar di bawah ini.

Karena sudut B = 90°, maka ΔABC siku-siku di B. Demikian halnya dengan ΔADC. Segitiga ADC siku-siku di D karena sudut D = 90°. Jadi, ΔABC dan ΔADC masing-masing merupakan segitiga siku-siku yang dibentuk dari persegi panjang ABCD yang dipotong menurut diagonal AC. Dari uraian di atas, dapat disimpulkan bahwa besar salah satu sudut pada segitiga siku-siku adalah 90°.

Segitiga sama kaki
Perhatikan gambar ΔABC dan ΔADC di bawah berikut ini.

Impitkan kedua segitiga yang terbentuk tersebut pada salah satu sisi siku-siku yang sama panjang seperti gambar di bawah ini.
Tampak bahwa akan terbentuk segitiga sama kaki seperti gambar di atas. Dengan demikian, dapat dikatakan sebagai berikut. Segitiga sama kaki dapat dibentuk dari dua buah segitiga siku-siku yang sama besar dan sebangun.

Sekarang, perhatikan gambar di atas. Jika segitiga sama kaki PQR dilipat menurut garis RS maka P akan menempati Q dan R akan menempati R. Dengan demikian, PR = QR. Akibatnya, sudut PQR = sudut QPR. Jadi, dapat disimpulkan bahwa segitiga sama kaki mempunyai dua buah sisi yang sama panjang dan dua buah sudut yang sama besar.
Perhatikan kembali gambar di atas. Lipatlah ΔPQR menurut garis RS. Segitiga PRS dan ΔQRS akan saling berimpit, sehingga PR akan menempati QR dan PS akan menempati SQ. Dalam hal ini dapat dikatakan bahwa RS merupakan sumbu simetri dari ΔPQR. Dari uraian di atas, dapat disimpulkan bahwa segitiga sama kaki mempunyai sebuah sumbu simetri.

Contoh Soal
Pada gambar di bawah ini.

 Diketahui ΔKLM sama kaki dengan LM = 13 cm dan MN = 5 cm. Jika sudut KLN = 20°, tentukan (a) besar sudut MLN; (b) panjang KL dan MK.

Penyelesaian: 
(a) Dari gambar dapat diketahui sudut MLN = sudut KLN = 20°. Jadi, besar sudut MLN = 20°. 

(b) Karena ΔKLM sama kaki, maka KL = LM = 13 cm. Pada ΔKLM, LN adalah sumbu simetri, sehingga MK= 2 x MN (MN = NK) = 2 x 5 cm = 10 cm. Jadi, panjang KL = 13 cm dan panjang MK = 10 cm.

Segitiga sama sisi
Segitiga sama sisi adalah segitiga yang ketiga sisinya sama panjang. Sekarang coba perhatikan gambar di bawah. 
Gambar di atas merupakan segitigasama sisi ABC dengan AB = BC = AC.

  1. Jika Anda melipat ΔABC menurut garis AE, maka ΔABE dan ΔACE akan saling berimpit, sehingga B akan menempati C dengan titik A tetap. Dengan demikian, AB = AC yang mengakibatkan sudut ABC = sudut ACB.
  2. Jika Anda melipat ΔABC menurut garis CD, maka ΔACD dan ΔBCD akan saling berimpit, sehingga A akan menempati B dengan C tetap. Oleh karena itu, AC = BC yang mengakibatkan, sudut ABC = sudut BAC.
  3. Selanjutnya, jika Anda melipat ΔABC menurut garis BF, maka ΔABF dan ΔCBF akan saling berimpit, sehingga A akan menempati C, dengan titik B tetap. Oleh karena itu, AB = BC yang mengakibatkan sudut BAC = sudut BCA.

Dari (1), (2), dan (3) diperoleh bahwa AC = BC = AB dan sudut ABC = sudut BAC = sudut BCA. Berdasarkan uraian di atas dapat disimpulkan bahwa segitiga sama sisi mempunyai tiga buah sisi yang sama panjang dan tiga buah sudut yang sama besar.

Sekarang, perhatikan kembali gambar di bawah ini.
Jika ΔABC dilipat menurut garis AE, maka ΔABE dan ΔACE akan saling berimpit, sehingga AB akan menempati AC dan BE akan menempati CE. Dalam hal ini dapat dikatakan bahwa AE merupakan sumbu simetri dari ΔABC.

Jika ΔABC dilipat menurut garis CD, maka ΔACD dan ΔBCD akan saling berimpit, sehingga AC akan menempati BC dan AD akan menempati BD. Berarti, CD merupakan sumbu simetri ΔABC. 

Demikian halnya jika ΔABC dilipat menurut garis BF, maka dapat membuktikan bahwa BF merupakan sumbu simetri dari ΔABC. Dari uraian di atas dapat disimpulkan bahwa setiap segitiga sama sisi mempunyai tiga sumbu simetri.

Baca Juga :  Hubungan Antar Himpunan