Pengertian, Rumus, Contoh Soal Perbandingan Senilai dan Berbalik Nilai dan Penyelesaiannya Lengkap – Dalam matematika terdapat materi pembelajaran tentang perbandingan. Materi perbandingan termasuk ke dalam golongan aritmatika. Perbandingan adalah usaha membandingkan dua objek atau lebih dengan menggunakan rumus perbandingan yang tepat.
Terdapat 2 (dua) jenis perbandingan matematika yaitu perbandingan senilai dan perbandingan berbalik nilai. Perbandingan senilai memiliki nilai tetap yang sama, sedangkan perbandingan berbalik nilai memiliki nilai tetap meskipun terbalik.
Pengertian dan Rumus Perbandingan Senilai
Perbandingan senilai adalah cara membandingkan dua objek atau lebih dengan besar salah satu nilai veriabel yang bertambah maka membuat variabel lain menjadi bertambah juga. Untuk itu, perbandingan senilai memiliki jumlah nilai variabel yang sama. Misalnya jumlah barang dengan jumlah harga barang, jumlah nilai tabungan dengan waktu menyimpan, jumlah pekerja dengan gaji pekerja, dan lain sebagainya. Berikut rumus perbandingan senilai:
Dari rumus diatas dapat disimpulkan bahwa nilai a1 sama dengan nilai b1 dan nilai a2 sama dengan nilai b2.
Pengertian dan Rumus Perbandingan Berbalik Nilai
Perbandingan berbalik nilai adalah cara membandingkan dua objek atau lebih dengan besar nilai salah satu variabel yang berubah maka membuat variabel lain menjadi berkurang nilainya. Contohnya seperti jumlah hewan dengan waktu makanan habis, jumlah pekerja dan waktu pernyelesaian pekerjaan dan lain sebagainya. Berikut rumus perbandingan berbalik nilai:
Dari rumus diatas, dapat disimpulkan bahwa nilai a1 berbalik nilai dengan b2 dan nilai a2 berbalik nilai dengan b1.
Contoh Soal Perbandingan Senilai dan Berbalik Nilai dan Penyelesaiannya
Berikut ini beberapa contoh soal perbandingan senilai dan perbandingan berbalik nilai:
1. Di pasar, 5 kg jeruk dijual dengan harga 60.000. Maka berapakah harga 10 kg jeruk?
Jawab:
Diketahui: a1 = 5; b1 = 60.000; a2 = 10
Ditanya: b2…?
Maka nilai b2
a1/b1 = a2/b2 (rumus perbandingan senilai)
5/60.000 = 10/b2 (Lakukan pengalian nilai secara menyilang)
5 x b2 = 10 x 60.000
b2 = 600.000/5
b2 = 120.000
Jadi harga 10 kg jeruk adalah Rp 120.000.
2. Pembangunan rumah dilakukan oleh 6 pekerja dengan waktu penyelesaian selama 20 hari. Jika jumlah pekerjanya menjadi 10 orang maka membutuhkan waktu berapa hari agar rumah tersebut selesai?
Jawab:
Diketahui: a1 = 6; b1 = 20; a2 = 10
Ditanya: b2…?
Maka nilai b2
a1/b2 = a2/b1 (rumus perbandingan berbalik nilai)
6/b2 = 10/ 20 (Lakukan pengalian nilai menyilang)
6 x 20 = 10 x b2
b2 = 120/10
b2 = 12
Jadi pekerja tersebut membutuhkan waktu selama 12 hari.
3. Pembuatan kolam renang dilakukan oleh 6 pekerja dengan gaji seluruh pekerja sebesar Rp 300.000. Tapi pemilik kolam renang ingin mempercepat pembuatannya, untuk itu ia menambahkan 2 orang lagi. Berapa jumlah gaji tambahannya?
Jawab:
Diketahui : a1 = 6; b1 = 300.000; a2 = 2
Ditanya : b2 = ?
Maka nilai b2
a1/b1 = a2/b2 (rumus perbandingan senilai)
6/300.000 = 2/b2 (Lakukan pengalian nilai menyilang)
6 x b2 = 300.000 x 2
b2 = 600.000/6
b2 = 100.000
Jadi jumlah gaji tambahannya yaitu sebesar Rp 100.000
4. Sebuah rumah dibangun dalam waktu 20 hari dengan jumlah pekerja 7 orang. Jika pemilik rumah tersebut ingin mempercepat waktunya menjadi 14 hari. Berapakah jumlah pekerja yang harus ditambah?
Jawab:
Diketahui: a1 = 20; b1 = 7; a2 = 14
Ditanya: b2…?
Maka nilai b2:
a1/b2 = a2/b1 (rumus perbandingan berbalik nilai)
20/b2 = 14/7 (Lakukan pengalian nilai menyilang)
20 x 7 = 14 x b2
b2 = 140/14
b2 = 10
Jadi pekerjanya harus ditambah sebanyak 10-7= 3 orang
5. Sebuah pabrik sepatu memiliki 5 mesin pembuat sepatu dengan waktu pembuatan 8 hari. Jika mesin yang digunakan berjumlah 8. Berapakah waktu yang dibutuhkan untuk membuat sepatu?
Jawab:
Diketahui : a1 = 5; b1 = 8; a2 = 8
Ditanya: b2…?
Maka nilai b2
a1/b2 = a2/b1 (rumus perbandingan berbalik nilai)
5/b2 = 8/8 (Lakukan pengalian nilai menyilang)
5 x 8 = 8x b2
b2 = 40/8
b2 = 5
Jadi waktu yang dibutuhkan selama 5 hari.
6. Perbandingan umur Dila dan adiknya adalah 1 : 3. Jumlah umur mereka 20 tahun. Berapakan umur Dila?
Jawab:
Diketahui:
Ani : Adik = 1 : 3
Jumlah umur Dila dan adiknya = 20 tahun
Ditanya: Umur Dila?
Jumlah perbandingan Ani dan adik = 1 + 3 = 4
Umur Ani = 1/4 x 20 tahun = 5 tahun
Demikian penjelasan yang bisa kami sampaikan tentang Pengertian, Rumus, Contoh Soal Perbandingan Senilai dan Berbalik Nilai dan Penyelesaiannya Lengkap . Semoga bermanfaat dan sampai jumpa pada postingan selanjutnya.
Artikel Paling Populer :
- Hukum Ohm Ada yang sudah mengenal atau pernah mendengar mengenai Hukum Ohm? Oke, mari simak penjelasan secara lengkapnya dibawah ini ya. Pengertian Hukum Ohm Hukum ohm ini diperkenalkan oleh seorang ilmuwan yang…
- Cara Menghitung Perbandingan Berbalik Nilai Kami akan membahas tentang cara menghitung perbandingan berbalik nilai. Apa itu perbandingan berbalik nilai? Sebelum membahas perbandingan berbalik nilai perhatikan ilustrasi di bawah ini. Mungkin Anda pernah ke sekolah…
- Bilangan Pangkat Pecahan : Pengertian, Rumus, Sifat… Bilangan Berpangkat Pecahan : Pengertian, Rumus, Sifat Operasi Hitung dan Contoh Soal Bilangan Pangkat Pecahan Lengkap – Bilangan berpangkat adalah bentuk perkalian bilangan-bilangan yang sama atau perkalian berulang, pangkat pada bilangan…
- Rumus Barisan Dan Deret Aritmatika Beserta Contoh… Rumus Barisan Dan Deret Aritmatika Beserta Contoh Soal Dan Penyelesaian Lengkap – Aritmatika atau Aritmetika berasal dari bahasa yunani αριθμός yang berarti angka yang dulu biasa disebut dengan Ilmu Hitung yaitu cabang tertua atau pendahulu…
- Proporsi Proporsi Perbandingan/rasio dan proporsi merupakan dasar utama untuk memahami berbagai konsep dalam matematika maupun sains. Proporsi mengatakan bahwa dua perbandingan (atau dua pecahan) adalah sama. Dengan kalimat lain dua buah perbandingan dikatakan…
- Grafik Perbandingan Seharga dan Berbalik Harga Tentunya Anda sudah mempelajari cara menghitung perbandingan senilai (seharga) dan perbandingan berbalik nilai. Bagaimana grafik kedua perbandingan tersebut? Silhkan perhatikan contoh tabel di bawah ini! Tabel berikut menunjukkan hubungan antara banyak pensil yang…
- Pengertian, Jenis-Jenis dan Contoh Soal Pesawat… Pengertian, Jenis-Jenis dan Contoh Soal Pesawat Sederhana Beserta Pembahasan Lengkap – Pesawat sederhana adalah semua alat bantu yang susunannya sederhana dan bisa memudahkan pekerjaan manusia. Pesawat sederhana ini memberikan banyak keuntungan…
- Pengertian, Rumus dan Contoh Soal Cara Menghitung… Pengertian, Rumus dan Contoh Soal Cara Menghitung Medan Listrik dan Kuat Medan Listrik Lengkap – Medan listrik adalah efek yang ditimbulkan oleh adanya muatan listrik, seperti elektron, ion atau proton dalam…
- Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam… Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam Matematika Perhatikan masalah yang di hadapi seorang peneliti sedang merancangsebuah wadah berbentuk balok dari bahan alumunium. Wadah tersebut harus mampu menampung…
- Pengertian, Rumus & Contoh Soal Barisan Dan Deret… Pengertian, Rumus & Contoh Soal Barisan Dan Deret Geometri Beserta Penjelasan Lengkap – Terdapat dua jenis Barisan dan Deret di dalam matematika yaitu Barisan dan Deret Aritmatika & Barisan dan…
- Pengertian Pola Bilangan : Macam Jenis dan Contoh… Pengertian Pola Bilangan : Macam Jenis dan Contoh Pola Bilangan Sebelum mempelajari barisan aritmatika dan barisan geometri, ada sub bab materi barisan bilangan atau bab yang perlu dipahami terlebih dahulu yaitu pola…
- Penerapan Pertidaksamaan Linear Satu Variabel Untuk mengerjakan soal-soal pertidaksamaan linear satu variabel yang berkaitan dengan permasalahan dalam kehidupan sehari-hari caranya hampir sama seperti mengerjakan soal-soal persamaan linear satu variabel (Silahkan baca penerapan persamaaan linear satu variabel).…
- Materi Lengkap Trigonometri Dengan Fungsi , Rumus… Materi Lengkap Trigonometri Dengan Fungsi , Rumus Dan Pembahasan Contoh Soal Dalam merancang kerangka sebuah jembatan perhitungan yang dilakukan tidaklah mudah. Beban, tegangan, serta gaya yang bekerja pada jembatan menjadi…
- Cara Mengubah Bentuk Pecahan ke Bentuk Persen Kita ketahui bahwa pecahan merupakan bilangan yang dinyatakan dengan a/b, di mana a merupakan pembilang dan b merupakan penyebut, sedangkan persen dapat diartikan sebagai perseratus yang ditulis dengan notasi %.…
- 5 Contoh Soal Kimia Dan Pembahasan Terlengkap… Telah kita pelajari tentang pengertan termokimia pada postingan sebelumnya. Bahwa Termokimia adalah cabang ilmu kimia yang mempelajari tentang perubahan kalor atau energi yang menyertai suatu reaksi kimia, baik yang diserap…
- Penerapan Operasi Hitung Bilangan Bulat operasi hitung pada bilangan bulat yang meliputi operasi penjumlahan, operasi pengurangan, operasi perkalian dan oprasi pembagian. Semua operasi tersebut sekarang kita terapkan pada contoh soal untuk menyelesaikan masalah yang berkaitan dengan kehidupan sehari-hari. Berikut contoh…
- Pengertian Kalor – Kaparitas Kalor, Kalor Jenis,… Suatu bentuk energi yang dipindahkan melalui perbedaan suhu dinamakan kalor. Kalor dipindahkan/berpindah dari benda bersuhu tinggi ke benda bersuhu rendah. Besarnya kalor yang diserap atau dilepas oleh suatu benda berbanding…
- Pengertian, Cara Menentukan, Contoh Soal Rumus… Pengertian, Cara Menentukan, Contoh Soal Rumus Empiris dan Rumus Molekul Senyawa Lengkap – Rumus kimia merupakan salah satu ciri khas dari senyawa kimia. Rumus kimia terbagi menjadi 2 (dua) yaitu rumus…
- Pengertian Transformator Dan Prinsip Kerja… Peralatan listrik yang digunakan untuk mengubah tegangan AC dari suatu nilai tertentu ke nilai yang dikehendaki disebut transformator. Prinsip transformator adalah GGL induksi dibangkitkan pada ujung-ujung kumparan sekunder akibat arus…
- Materi Stoikiometri Ada yang sudah mengenal atau pernah mendengar mengenai Stoikiometri? Oke, mari simak penjelasan secara lengkapnya dibawah ini ya. Pengertian Stoikiometri Kata “Stoikiometri” ini berasal dari bahasa Yunani, yaitu dari kata “Stoicheion” yang berarti “unsur” dan juga…