Pengertian, Rumus & Contoh Soal Barisan Dan Deret Geometri Beserta Penjelasan Lengkap – Terdapat dua jenis Barisan dan Deret di dalam matematika yaitu Barisan dan Deret Aritmatika & Barisan dan Deret Geometri. Kali ini kita akan membahas tentang barisan dan deret geometri. Berikut adalah penjelasan selengkapnya:
Pengertian dan Rumus Barisan Geometri
Barisan Geometri dapat didefinisikan sebagai barisan yang tiap-tiap sukunya diperoleh dari hasil perkalian suku sebelumnya dengan sebuah konstanta tertentu.
Barisan geometri adalah barisan yang emmenuhi sifat hasil bagi sebuah suku dengan suku sebelumnya berurutan bernilai konstanta. Misalnya barisan geometri tersebut yaitu a,b, dan c maka c/b =b/a sama dengan konstanta. Hasil bagi suku yang berdekatan disebut disebut dengan rasio (r).
Misal ditemukan sebuah deret geometri
U1, U2, U3,…,Un-1, Un
Maka U2/U1, U3/U2,…, Un/Un-1 = r (konstan atau rasio)
Lalu bagaimana menentukan suku ke-n dari barisan geometri:
U3/U2 = r maka U3 = U2.r = a.r.r = ar2
Un/Un-1 = r maka Un = Un-1. r = arn-2.r = arn-2+1 = arn-1
jadi dapat disimpulkan bahwa rumus suku ke-n baris geometri yaitu Un = arn-1
a= suku awal r rasio
Contoh Barisan Geometri
Agar kalian lebih memahami apa yang dimaksud dengan barisan geometri. Perhatikan contoh berikut ini:
3, 9, 27 , 81, 243, …
Barisan di atas merupakan contoh barisan geometri dimana setiap suku pada barisan tersebut merupakan hasil dari perkalian suku sebelumnya dengan konstanta 3. Maka dapat disimpulkan bahwa rasio pada barisan di atas adalah 3. rasio pada suatu barisan bisa dirumuskan menjadi:
r = ak+1/ak
Dimana ak yaitu sembarang suku dari barisan geometri yang ada. sementara ak+1 yaitu suku selanjutnya setelah ak. Untuk menentukan suku ke-n dari sebuah barisan geometri, kita bisa menggunakan rumus sebagai berikut:
Un = arn-1
Dengan a merupakan suku awal dan r ialah nilai rasio dari sebuah barisan geometri.
Contoh Soal dan Pembahasan Barisan Geometri
1. Sebuah Bakteri mampu melakukan pembelahan diri menjadi 4 setiap 12 menit. berapakah jumlah bakteri yang ada setelah 1 jam jika sebelumnya terdapat 3 buah bakteri?
Cara penyelesaian:
Diketahui:
a = 3
r = 4
n = 1 jam/12 menit = 60/12 = 5
Ditanya: U5…?
Jawab:
Un = arn-1
U5 = 3 x 45-1
U5 = 3 x 256 = 768 bakteri
Pengertian dan Rumus deret Geometri
Deret geometri bisa diartikan sebagai jumlah dari n suku pertama pada sebuah barisan geometri. apabila suku ke-n dari suatu barisan geometri digambarkan dengan rumus: an = a1rn-1, maka deret geometrinya dapat dijabarkan menjadi:
Sn = a1 + a1r + a1r2 + a1r3 + … + a1rn-1
Jika kita mengalikan deret geometri di atas dengan -r, kemudian kita jumlahkan hasilnya dengan deret aslinya, maka kita akan memperoleh:
Setelah diperoleh Sn – rSn = a1 – a1rn maka kita bisa mengetahui nilai dari suku n pertama dengan cara sebagai berikut:
Berdasarkan kepada hasil perhitungan di atas, maka bisa disimpulkan bahwa rumus jumlan n suku pertama pada sebuah barisan geometri ialah:
Contoh Soal Deret Geometri
1. Tentukanlah jumlah 8 suku pertama dari barisan geometri 2, 8, 32, ..
Cara penyelesaian:
Diketahui:
a = 2
r = 4
n = 8
Ditanya: S8..?
Sn = a (1-rn) / (1-r)
S8 = 2 (1-48) / (1-4)
S8 = 2 (1-65536)/ (-3)
S8 = 2 (-65535)/ (-3)
S8 = 2 x 21845
S8 = 43690
Sisipan Barisan Geometri
Dalam barsan geometri terdapat sisipa. Misalnya antara p dan q ada sisipan k buah bilangan dan terjadi barisan geometri, maka rasio barisan geometri dapat dicari dengan rumus:
Suku Tengah Barisan Geometri
Apabila U1, U2,…,Un merupakan barisan geometri dengan n ganjil maka suku tengah barisan geometri tersebut dapat dicari dengan rumus berikut ini:
Deret Geometri Tak Hingga
Saat bola bekel dijatuhkan dari ketinggian 1 meter maka bola tersebut aka memantuk ketas sejauh 0,8 tinggi jatuh sebelumnya, lalu berapa jarak yang ditempuh bola bekel hingga berhenti?
Ini merupakan contoh deret geomerti tak hingga yaitu deret yang banyak sukunya tak terhingga. Jumlah suku dari deret tak hingga ada kemungkinan hingga atau tak hingga. Apabila deret tersebut hingga maka deret tersebut disebut deret konvergen dan Apabila tak hingga disebut deret divergen. Lebih jelasnya, apabila jumlah deret tak hingga menuju ke suatu harga tertentu yang berhingga maka disebut deret konvergen (mengerucut). Sebaliknya, deret geometri yang menuju bilangan tak hingga disebut deret divergen.
Deret tak hingga yang memilii rasio r ≥ 1 atau r ≤ 1 disebut deret divergen dan yang memiliki rasio -1< r < 1 disebut deret konvergen. Untuk menghitung deret tak hingga ada dua rumus tergantung pada nilai r.
Contoh Soal Deret Geometri Tak Hingga
1. Tentukan jumlah suku-suku deret geometri tak hingga dari 1 + 0,5 + 0,25 + 0,125 + …
Cara Penyelesaian:
Diketahui
a = 1
r = 0,5
Ditanya: S∞..?
S∞ = a/1-r
S∞ = 1/1-0,5
S∞ = 1/0,5
S∞ = 2
Demikian artikel pembahasan tentang”Pengertian, Rumus & Contoh Soal Barisan Dan Deret Geometri Beserta Penjelasan Lengkap“, semoga bermanfaat dan jangan lupa ikuti postingan kami berikutnya.
Artikel Paling Populer :
- Sejarah Suku Musi Banyuasin Musi Banyuasin adalah kelompok masyarakat asli yang bermukim di beberapa Kecamatan di Kabupaten Musi Banyuasin, Provinsi Sumatera Selatan, Kabupaten seluas 25.664 kilometer persegi ini terdiri atas 20 Kecamatan. Penduduk Kabupaten…
- Pengertian, Sifat, Rumus dan Contoh Soal Tekanan… Pengertian, Sifat, Rumus dan Contoh Soal Tekanan Hidrostatis Beserta Pembahasan Terlengkap – Tekanan hidrostatis adalah tekanan yang diakibatkan oleh gaya yang ada pada zat cair terhadap suatu luas bidang tekan…
- Proporsi Proporsi Perbandingan/rasio dan proporsi merupakan dasar utama untuk memahami berbagai konsep dalam matematika maupun sains. Proporsi mengatakan bahwa dua perbandingan (atau dua pecahan) adalah sama. Dengan kalimat lain dua buah perbandingan dikatakan…
- Operasi Perpangkatan Pada Bentuk Aljabar pada postingan kali ini kami akan membahas tentang operasi perpangkatan pada bentuk aljabar. Operasi perpangkatan diartikan sebagai perkalian berulang dengan bilangan yang sama. Jadi, untuk sebarang bilangan bulat a, berlaku: Hal ini…
- Penjumlahan dan Pengurangan Pada Bentuk Aljabar Operasi hitung pada bentuk aljabar sama seperti operasi hitung pada bilangan bulat yang meliputi: penjumlahan, pengurangan, perkalian, pembagian dan perpangkatan. Nah pada postingan ini kami hanya membahas tentang penjumlahan dan…
- Fisika Inti Dan Radioativitas – 11 Inti Induk dan… Penjelasan Lengkap Materi Fisika Inti Dan Radioativitas – 11 Inti Induk dan Inti Baru radioaktivitas Beserta Rumus Soal Di dalam inti atom terdapat proton dan netron. Proton – proton dalam inti…
- Sifat-sifat dan Invers Perkalian Pada Pecahan Sifat-sifat perkalian pada pecahan sama seperti sifat-sifat perkalian pada bulangan bulat. Ada enam sifat-sifat perkalian pada bilangan bulat yakni sifat tertutup, sifat komutatif, sifat asosiatif, sifat distributif perkalian terhadap penjumlahan, sifat distributif…
- Pengertian, Rumus, Contoh Soal Perbandingan Senilai… Pengertian, Rumus, Contoh Soal Perbandingan Senilai dan Berbalik Nilai dan Penyelesaiannya Lengkap – Dalam matematika terdapat materi pembelajaran tentang perbandingan. Materi perbandingan termasuk ke dalam golongan aritmatika. Perbandingan adalah usaha membandingkan…
- Pengertian, Cara Menentukan, Contoh Soal Rumus… Pengertian, Cara Menentukan, Contoh Soal Rumus Empiris dan Rumus Molekul Senyawa Lengkap – Rumus kimia merupakan salah satu ciri khas dari senyawa kimia. Rumus kimia terbagi menjadi 2 (dua) yaitu rumus…
- Asas Larangan Pauli – Orbital Atom , Konfigurasi… Asas Larangan Pauli – Pengertian Orbital Atom , Konfigurasi Elektron Atom Berelektron Banyak, Dan Sistem Periodik Unsur Wolfgang Pauli menemukan asas yang mengatur konfigurasi atom-atom berelektron banyak. Asas Larangan Pauli…
- Pengertian Bendung, Komponen, Jenis, Manfaat,… Pengertian Bendung, Komponen, Jenis, Manfaat, Fungsi, Dampak dan Contoh Bendung Lengkap – Bendung adalah pembatas yang dibangun melintasi sungai yang dibangun untuk mengubah karakteristik aliran sungai. Bendung merupakan sebuah kontruksi yang…
- Bentuk dan Unsur - Unsur Aljabar Tahukah Anda apa pengertian aljabar (algebra)? Menurut Wikipedia, aljabar (algebra) berasal dari Bahasa Arab "al-jabr" yang artinya "hubungan" atau "penyelesaian". Jadi, aljabar merupakan cabang ilmu matematika yang mempelajari hubungan dan penyelesaian…
- Pembahasan Lengkap Aturan Cosinus Segitiga… Pembahasan Lengkap Aturan Cosinus Segitiga Trigonometri Dalam Ilmu Matematika – Teorema Pythagoras merupakan suatu rumus matematika yang sangat penting dalam geometri. Dengan menggunakan teorema phytagoras, kita bisa menghitung jarak antara dua…
- Rumus Barisan Dan Deret Aritmatika Beserta Contoh… Rumus Barisan Dan Deret Aritmatika Beserta Contoh Soal Dan Penyelesaian Lengkap – Aritmatika atau Aritmetika berasal dari bahasa yunani αριθμός yang berarti angka yang dulu biasa disebut dengan Ilmu Hitung yaitu cabang tertua atau pendahulu…
- Pengertian, Rumus dan Contoh Soal Perpindahan Kalor… Pengertian, Rumus dan Contoh Soal Perpindahan Kalor Secara Radiasi (Pancaran) Beserta Pemahaman Terlengkap – Jarak dari bumi ke matahari mencapai 149.600.000 km dan antara bumi dan matahari terdapat ruang hampa udara,…
- Pengertian Gerak Vertikal ke Bawah, Ciri, Rumus dan… Pengertian Gerak Vertikal ke Bawah (GVB), Ciri, Rumus dan Contoh Soal Gerak Vertikal ke Bawah Beserta Pembahasan Lengkap – Gerak Vertikal ke Bawah (GVB) adalah salah satu bentuk gerak lurus yang…
- Sifat-Sifat Perkalian Pada Bilangan Bulat Perkalian merupakan operasi penjumlahan berulang dengan bilangan yang sama. Misalnya 3 × 2 = 2 + 2 + 2 dan 2 × 3 = 3 + 3. Meskipun hasil akhirnya sama, perkalian…
- Menggunakan Konsep Turunan Dalam Menggambar Kurva Polinom Selamat datang pada blog carabelajarmatematika.com, pada artikel kali ini kita akan membahas mengenai Konsep Turunan Dalam Menggambar Kurva Polinom. Langsung saja kita bahas penjelasannya dibawah ini. Grafik fungsi merupakan gambaran sebuah geometri dari sebuah…
- Penjelasan Degrees of Comparison dalam Bahasa… Penjelasan Degrees of Comparison dalam Bahasa Inggris dan Soal Latihannya - Jika sebelumnya kita pernah membahas tentang Positive Degree, Comparative Degree, dan Superlative Degree. Nah kali ini kami akan membahas induk dari 3 jenis…
- Pengertian, Jenis-Jenis, Persamaan dan Perbedaan… Pengertian, Jenis-Jenis, Persamaan dan Perbedaan Singkatan dan Akronim Beserta Contohnya Lengkap – Kali ini kita akan membehas tentang singkatan dan akronim, mulai dari pengertian singkatan dan pengertian akronim, macam-macam atau…