Untuk mengerjakan soal-soal pertidaksamaan linear satu variabel yang berkaitan dengan permasalahan dalam kehidupan sehari-hari caranya hampir sama seperti mengerjakan soal-soal persamaan linear satu variabel (Silahkan baca penerapan persamaaan linear satu variabel). Jadi selain Anda harus paham dengan cara pengerjaan soal-soal persamaan linear satu variabel yang berkaitan dengan permasalahan dalam kehidupan sehari-hari, Anda juga harus paham dengan cara penyelesaian pertidaksamaan linear satu variabel. Untuk lebih jelasnya, silahkan Anda pelajari contoh soal-soal berikut.
Contoh Soal 1
Suatu model kerangka balok terbuat dari kawat dengan ukuran panjang (y + 8) cm, lebar y cm, dan tinggi (y – 5) cm. a). Tentukan model matematika dari persamaan panjang kawat yang diperlukan dalam y. b). Jika panjang kawat yang digunakan seluruhnya tidak lebih dari 156 cm, tentukan ukuran maksimum balok tersebut.
Penyelesaian:
a). Jika permasalahan di atas digambarkan akan tampak seperti gambar di bawah ini.
Misalkan panjang kawat yang diperlukan = K, maka untuk mencari model matematikanya gunakan rumus mencari model kerangak balok yakni:
K = 4p + 4l + 4t
K = 4(y + 8) + 4y + 4(y – 5)
K = 4y + 32 + 4y + 4y – 20
K = 12y + 12
b). Panjang kawat tidak lebih dari 156 cm dapat ditulis
12y+ 12 ≤ K
<=> 12y + 12 ≤ 156
<=> 12y ≤ 156 – 12
<=> y ≤ 144/12
<=> y ≤ 12
Nilai maksimum y = 12 cm, sehingga diperoleh
p = (y + 8) cm = 20 cm
l = y = 12 cm
t = (y – 5) cm = 7 cm
Jadi, ukuran maksimum balok adalah (20 x 12 x 7) cm.
Contoh Soal 2
Persegi panjang mempunyai panjang (x + 7) cm dan lebar (x – 2) cm. Jika
kelilingnya tidak lebih dari 50 cm, tentukan luas maksimum persegi panjang tersebut.
Penyelesaian:
Jika permasalahan di atas digambarkan akan tampak seperti gambar di bawah ini.
maka untuk mencari model matematikanya gunakan rumus keliling persegi panjang yakni:
K = 2p + 2l
K = 2(x + 7) + 2(x – 2)
K = 2x + 14 + 2x – 4
K = 4x + 10
Jika keliling persegi panjang tidak lebih dari 50 cm dapat ditulis
4x + 10 ≤ K
<=> 4x + 10 ≤ 50
<=> 4x ≤ 50 – 10
<=> x ≤ 40/4
<=> x ≤ 10
Nilai maksimum x = 10 cm, sehingga diperoleh
p = (x + 7) cm = 17 cm
l = (x – 2) cm = 8 cm
Luas maksimum persegi panjang yakni:
L = p . l
L = 17 cm . 8 cm
L = 136 cm2
Jadi, ukuran luas maksimum persegi panjang adalah 136 cm2.
Demikian postingan kami tentang membuat model matematika dan menyelesaikan soal cerita yang berkaitan dengan pertidaksamaan linear satu variabel.
Artikel Paling Populer :
- Penyelesaian Persamaan Linear Satu Variabel Bentuk Pecahan Dalam menyelesaikan persamaan linear satu variabel (PLSV) yang berbentuk pecahan caranya hampir sama seperti mengerjakan PLSV yang bentuknya bukan pecahan yang sudah dibahas pada postingan sebelumnya dan tetnunya cara tersebut hampir sama…
- Faktor Persekutuan Terbesar (FPB) Suatu Bilangan Bulat Sebelum membahas tentang faktor pesekutuan terbesar (FPB) dari dua atau lebih bilangan bulat, silahkan simak contoh soal berikut “Ibu Ani akan membuat parcel buah yang berisi tiga jenis buah yakni…
- Dinamika Gerak Rotasi : Pengertian, Rumus Dan… Dinamika Gerak Rotasi : Pengertian, Rumus Dan Pembahasan Contoh Soal – Aksi akrobat selalu menghadirkan decak kagum setiap orang yang menyaksikan. Atraksi yang sering dilakukan misalnya melipat tubuh dan menaiki roda yang…
- Pengertian Segmentasi Pasar, Syarat, Tujuan,… Pengertian Segmentasi Pasar, Syarat, Tujuan, Manfaat, Dasar, Tingkatan dan Strategi Segmentasi Pasar Terlengkap – Segmentasi pasar (Marketing segmentation) adalah kegiatan membagi suatu pasar menjadi kelompok pembeli yang berbeda yang memiliki…
- Jenis Jenis Metode dalam Penelitian Kuantitatif dan… Mengetahui Jenis Jenis Metode dalam Penelitian Kuantitatif dan Pengertian Terlengkap Penelitian Kuantitatif merupakan metode penelitian yang lebih menekankan pada aspek pengukuran secara objektif terhadap fenomena sosial. Untuk melakukan pengukuran, setiap…
- Rabat (Diskon), Bruto, Tara, Dan Neto Dalam dunia perdagangan dikenal istilah-istilah, seperti diskon (rabat), bruto, neto, dan tara. Pada bahasan berikut akan dijelaskan mengenai istilah-istilah tersebut. Diskon (Rabat) Pernahkah anda berbelanja di supermarket pada saat menjelang…
- Gerak Melingkar Beraturan (GMB) Ada yang sudah mengenal atau pernah mendengar mengenai istilah Gerak Melingkar Beraturan (GMB)? Simak penjelasan terlengkapnnya di bawah ini. Pengertian Gerak Melingkar Beraturan (GMB) Gerak Melingkar Beraturan (GMB) merupakan salah…
- Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam… Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam Matematika Perhatikan masalah yang di hadapi seorang peneliti sedang merancangsebuah wadah berbentuk balok dari bahan alumunium. Wadah tersebut harus mampu menampung…
- Pengertian Kuadrat dan Akar Kuadrat Bilangan Bulat Pada saat ditingkat SD/MI Anda telah mempelajari kuadrat dan akar kuadrat bilangan bulat. Sekarang pada postingan ini kembali mengulas tentang materi kuadrat dan akar kuadrat dengan tujuan untuk mengingatkan kepada…
- Pengertian Pangkat Tiga dan Akar Pangkat Tiga Pada postingan sebelumnya yang berjudul “Pengertian Perpangkatan Bilangan” sudah dijelaskan bahwa operasi perpangkatan merupakan perkalian berulang dengan unsur yang sama. Hal ini juga berlaku pada bilangan berpangkat tiga. Jadi, m3 =…
- Balok – Sifat-Sifat Balok, Unsur-Unsur Balok, Rumus… Balok – Sifat-Sifat Balok, Unsur-Unsur Balok, Rumus dan Contoh Soal Balok Beserta Cara Penyelesaian – Balok adalah bangun ruang 3 dimensi yang dibentuk oleh tiga pasang persegi atau persegi panjang dengan paling…
- Cara Menentukan Faktor Suatu Bilangan Bulat Cara menentukan faktor suatu bilangan bulat sangat penting dan Anda harus menguasainya karena materi ini merupakan materi dasar untuk menguasai konsep faktor persekutuan terbesar (FPB) yang nantinya akan dibahas setelah…
- Rumus dan Cara Mencari Jumlah Tabungan Setelah dan Tahun Rumus dan cara mencari jumlah tabungan setelah n tahun perlu Anda ketahui karena hampir setiap UN soal-soal seperti itu sering keluar. Hanya saja bentuk soalnya sedikit dimodifikasi dan angkanya juga diubah,…
- Menentukan FPB Dengan Cara Faktorisasi Prima kita dapat menentukan FPB dari dua bilangan atau lebih dengan terlebih dahulu menentukan faktorisasi prima masing-masing bilangan itu. Di mana faktorisasi prima merupakan perkalian semua faktor-faktor prima dari suatu bilangan.…
- Cara Cepat Menentukan Invers Fungsi dan Invers Dari… Cara Cepat Menentukan Invers Fungsi dan Invers Dari Fungsi Komposisi Setelah kita pelajari tentang fungsi komposisi pada postingan sebelumnya, kali ini materi yang akan dipelajari adalah tentang fungsi invers. Dalam…
- Pengertian Diagram Venn Untuk menyatakan suatu himpunan secara visual (gambar), Anda dapat menunjukkan dalam suatu diagram Venn. Diagram Venn pertama kali diketemukan oleh John Venn, seorang ahli matematika dari Inggris yang hidup pada…
- Gerak Melingkar Berubah Beraturan (GMBB) Ada yang sudah mengenal atau pernah mendengar mengenai istilah Gerak Melingkar Berubah Beraturan (GMBB)? Simak penjelasan terlengkapnnya di bawah ini. Pengertian Gerak Melingkar Berubah Beraturan (GMBB) Gerak Melingkar Berubah Beraturan…
- Penjelasan Kemolaran Dan Pengertian Laju Reaksi… Setiap reaksi yang berlangsung selalu melibatkan komponen-komponen berupa pereaksi, hasil reaksi, dan laju reaksi. Rada saat reaksi berlangsung, konsentrasi zat pereaksi dan zat hasil reaksi akan mengalami perubahan. Reaksi ada…
- Dasar yang dapat dibentuk untuk membuat huruf,… Dasar yang dapat dibentuk untuk membuat huruf, grafik serta elemen grafis yang lainnya disebut... A. Vektor B. Garis C. Linear D. Kurva E. Typografi Jawaban : B. Garis
- Pengertian dan Cara Menentukan Pecahan Senilai Sebelumnya sudah membahas tentang pengertian bilangan pecahan dan contohnya dalam kehidupan sehari-hari. Sedangkan, postingan kali ini akan membahas tentang pengertian pecahan senilai dan cara menentukan bahwa dua pecahan dikatakan senailai. Untuk lebih…