Pembahasan Lengkap Aturan Cosinus Segitiga Trigonometri Dalam Ilmu Matematika – Teorema Pythagoras merupakan suatu rumus matematika yang sangat penting dalam geometri. Dengan menggunakan teorema phytagoras, kita bisa menghitung jarak antara dua titik pada bidang koordinat, selain itu kita juga bisa menurunkan persamaan lingkaran.
Akan tetapi, penggunaan teorema pythagoras hanya dibatasi pada permasalahan yang melibatkan segitiga siku-siku. Teorema Pythagoras tidak berlaku untuk segitiga lancip atau segitiga tumpul, mengapa? Untuk itu, coba perhatikan penjelasan dibawah ini!
Apabila sisi siku-siku dari segitiga siku-siku dibuat lebih dekat (sudut yang diapit semakin kecil) jadi sudut siku-sikunya akan menjadi sudut lancip, maka akan diperoleh c2 < a2+ b2. Untuk membuat pertidaksamaan ini menjadi suatu persamaan, maka perlu mengurangkan a2 + b2 dengan nilai tertentu.
c2 = a2 + b2 – nilai tertentu
Sebaliknya, apabila sisi siku-sikunya dibuat lebih jauh (sudut yang diapit semakin besar) maka sudut siku-sikunya akan menjadi sudut tumpul, maka akan di peroleh c2 > a2 + b2. Untuk mendapatkan persamaan maka tambahkn nilai tertentu pada a2 + b2.
c2 = a2 + b2 + nilai tertentu
Nilai tertentu tersebut adalah 2ab.cos C. Rumus hasil modifikasi teorema Pythagoras ini disebut aturan cosinus.
Aturan Cosinus
Rumus untuk sembarang segitiga yang panjang sisi-sisinya a, b, c, dan C adalah sudut di hadapan sisi yang panjangnya c.
c2 = a2 + b2 – 2ab ∙ cos C
Karena nilai cos dari sudut tumpul adalah negatif, maka nilai 2ab ∙ cos C juga bernilai negatif. Sehingga pengurangan oleh 2ab ∙ cos C akan sama dengan penjumlahan oleh nilai positif.
Untuk menurunkan aturan cosinus pada segitiga lancip, perhatikan segitiga ABC dengan AD sebagai garis tinggi, yang ditunjukkan gambar di atas. Kita bisa menyebut panjang sisi-sisi di depan sudut A, B, dan C secara berturut-turut adalah a, b, dan c, tingginya adalah t, serta panjang sisi CD sebagai x. Panjang sisi BD merupakan hasil pengurangan panjang sisi BC oleh CD, yaitu a-x.
Dengan menggunakan teorema Pythagoras, maka bisa diperoleh dua persamaan tersebut. Dengan menggunakan aljabar, maka dapat menjabarkan bentuk (a-x)2.
Perhatikan kedua persamaan diatas, memuat x2+t2, yang diketahui sama dengan b2 dari persamaan 1. Substitusikan persamaan 1 ke persamaan 2.
Sekarang ganti x dengan bentuk yang memuat cos C. Dengan menggunakan segitiga ACD, maka dapat ditulis persamaan berikut dan menuliskan x dalam bentuk cos C.
Substitusikan persamaan 4 ke persamaan 3, maka diperoleh rumus aturan cosines:
c2 = a2 + b2 – 2ab cos C
Meski penurunan aturan cosinus dilakukan pada segitiga lancip, aturan ini juga berlaku pada segitiga tumpul. Selain itu, aturan cosinus juga bisa digunakan jika diketahui panjang 3 sisi segitiga atau panjang dua sisi segitiga dan besar sudut yang diapitnya (ss.ss.ss atau ss.sd.ss).
Contoh Soal dan Pembahasan Aturan Cosinus Segitiga Trigonometri
Contoh 1
Diketahui! Pada segitiga ABC, AB = 4 cm, BC = 6 cm dan AC = 7 cm. Nilai cos C = …
Jawab:
c2 = a2 + b2 – 2ab cos C
16 = 36 + 49 – 2.6.7 cos A
84 cos A = 69
cos A = 69/84
cos A = 23/28
Contoh 2 :
Diketahui! Pada jajaran genjang ABCD, ∠BAD = 60o. Jika AB = 16 cm dan AD = 10 cm maka panjang AC = …
Jawab :
Perhatikan gambar diatas!
∠BAC ≠ ∠CAD, sebab AB ≠ AD
Untuk mempermudah perhitungan tersebut, maka perpanjang garis AB
AC2 = AB2 + BC2 – 2 AB.BC cos 120°
AC2 = 162 + 102 – 2 16.10.(-1/2)
AC2 = 256 + 100 + 160
AC2 = 516
Contoh 3 :
Diketahui : Pada segitiga ABC, ∠A = 60o, AB = 7 cm, BC = √109 cm. Panjang AC = …
Jawab :
a2 = b2 + c2 – 2 bc cos 60o,
109 = b2 + 49 – 2.b.7.(1/2)
109 = b2 + 49 – 7b
b2 – 7b – 60 = 0
(b – 12)(b + 5) = 0
b = 12 atau b = -5
Jawaban yang memenuhi adalah AC = 12 cm
Demikian penjelasan tentang Pembahasan Lengkap Aturan Cosinus Segitiga Trigonometri Dalam Ilmu Matematika . Semoga bermanfaat dan sampai jumpa pada postingan selanjutnya.
Artikel Paling Populer :
- Matematikawan Terhebat Sepanjang Masa Matematikawan Terhebat Sepanjang Masa Mari kita akui saja bahwa Matematika adalah salah satu mata pelajaran yang paling menyenangkan dan populer. Orang menyukai Matematika karena berbagai alasan. Namun, ada banyak orang…
- Tekanan Adalah Ada yang sudah mengenal atau pernah mendengar mengenai istilah Tekanan? Simak penjelasan terlengkapnnya di bawah ini. Pengertian Tekanan Tekanan merupakan besarnya gaya dibanding dengan luas penampang. Dalam satuan SI nyatakan…
- Pengertian Bangun Ruang : Macam Macam Bangun Ruang,… Pengertian Bangun Ruang : Macam Macam Bangun Ruang, Penjelasan dan Rumusnya Lengkap – Dalam matematika membahas tentang bangun ruang. Apa itu bangun ruang? Agar lebih memahaminya, kita akan membahas tentang pengertian bangun…
- Prisma – Sifat, Unsur, Jaring-Jaring Prisma, Rumus… Prisma – Sifat, Unsur, Jaring-Jaring Prisma, Rumus (Luas Permukaan Prisma dan Volume Prisma) dan Contoh Soal Lengkap – Prisma adalah salah satu bentuk bangun ruang yang dibatasi oleh 2 bangun datar yang…
- Sifat-Sifat Segitiga Secara Umum Kita sudah mengetahui pengertian dan jenis-jenis segitiga. Sekarang kita aka membahas mengenai sifat-sifat segitiga pada umum. Secara umum segitiga akan memeneuhi konsep ketidaksamaan segitiga, hubungan sudut dalam segitiga, dan hubungan sudut…
- Penerapan Pertidaksamaan Linear Satu Variabel Untuk mengerjakan soal-soal pertidaksamaan linear satu variabel yang berkaitan dengan permasalahan dalam kehidupan sehari-hari caranya hampir sama seperti mengerjakan soal-soal persamaan linear satu variabel (Silahkan baca penerapan persamaaan linear satu variabel).…
- Limas – Jaring-Jaring, Unsur-Unsur Limas, Rumus… Jaring-Jaring Limas, Unsur-Unsur Limas, Rumus Limas (Luas Permukaan dan Volume Limas) Beserta Contoh Soal dan Pembahasan – Limas adalah bangun ruang 3 dimensi yang dibatasi oleh alas berbentuk segi-n dan sisi-sisi tegak…
- Sifat-Sifat Segitiga Istimewa sekarang akan membahas sifat-sifat segitiga secara spesifik yaitu segitiga istimewa. Apa itu segitiga istimewa dan bagaimana sifat-sifatnya? Segitiga istimewa adalah segitiga yang mempunyai sifat-sifat khusus (istimewa). Dalam hal ini ada…
- Balok – Sifat-Sifat Balok, Unsur-Unsur Balok, Rumus… Balok – Sifat-Sifat Balok, Unsur-Unsur Balok, Rumus dan Contoh Soal Balok Beserta Cara Penyelesaian – Balok adalah bangun ruang 3 dimensi yang dibentuk oleh tiga pasang persegi atau persegi panjang dengan paling…
- Penerapan Persamaan Linear Satu Variabel Banyak sekali permasalahan dalam kehidupan sehari-hari yang dapat diselesaikan dengan menggunakan persamaan linear satu variabel. Permasalahan-permasalahan tersebut biasanya disajikan dalam bentuk soal cerita. Untuk menyelesaikannya, hal pertama yang harus Anda…
- Hubungan Sudut Jika Dua Garis Sejajar Dipotong Garis Sebelumnya sudah membahas materi hubungan antar sudut, akan tetapi sekarang juga tetap membahas materi tentang hubungan antar sudut. Pembahasan kali ini lebih memfokuskan bagaimana hubungan antar sudut jika sudut-sudut tersebut…
- Cara Menghitung Perbandingan Seharga (senilai) Mungkin anda pernah membeli buah apel, semakin banyak anda membeli buah apel maka semakin banyak juga uang yang anda keluarkan. Begitu juga sebaliknya, semakin sedikit anda membeli buah apel maka…
- Perbandingan Segmen Garis Pada dasarnya materi perbandingan segmen garis hampir sama dengan perbandingan senilai atau seharga yang sudah diulas pada Materi matematika kelas VII Semester Ganjil pada postingan yang berjudul Cara Menghitung Perbandingan Seharga (senilai). Sebuah…
- Pengertian, Sifat, Rumus, dan Contoh Soal… Pengertian, Sifat, Rumus, Jawaban dan Contoh Soal Layang-Layang Beserta Pembahasan Lengkap – Layang-layang adalah bangun datar 2 dimensi yang dibentuk oleh 2 pasang rusuk yang masing-masing pasangan sama panjang dan…
- Dinamika Partikel Ada yang sudah mengenal atau pernah mendengar mengenai istilah Dinamika Partikel? Simak penjelasan terlengkapnnya di bawah ini. Pengertian Dinamika Partikel Dinamika partikel merupakan suatu ilmu yang membahas tentang gaya-gaya yang…
- Bangun Datar – Pengertian, Macam-Macam, Sifat-Sifat,… Bangun Datar – Pengertian, Macam-Macam Jenis Bangun Datar, Sifat-Sifat Bangun Datar, dan Rumus Bangun Datar Serta Contoh Soal Bangun Datar Terlengkap – Bangun datar adalah sebutan untuk bangun-bangun dua dimensi, gabungan bangun datar…
- Gelombang : Pengertian, Manfaat, Sifat, Jenis,… Gelombang : Pengertian, Manfaat, Sifat, Jenis, Besaran, Rumus dan Contoh Soal Gelombang Lengkap – Gelombang adalah suatu bentuk getaran yang merambat pada suatu medium. Yang disebut gelombang adalah gelombang yang merambat bukan zat…
- Rumus Layang-Layang : Pengertian, Sifat, Menghitung… Rumus Luas dan Keliling Layang-Layang – Bangun layang-layang adalah? Apa rumus layang-layang? Sebutkan sifat-sifat layang-layang! Agar lebih memahaminya, kali ini kita akan membahas tentang pengertian bangun layang-layang, sifat, gambar, rumus, contoh…
- Mempelajari Sistem Persamaan Linier Dan Metode… Sistem persamaan linier sebenarnya hampir sama dengan persamaan aljabar, yakni sebuah sistem penghitungan yang menggunakan metode matematika dan juga dapat di gambarkan dengan menggunakan bentuk garis lurus dalam sebuah grafik.…
- Matriks – Operasi Matriks, Rumus, Contoh Soal… Matriks – Operasi Matriks, Rumus, Contoh Soal Matriks dan Jawabannya Lengkap – Dalam matematika, matriks adalah susunan bilangan, simbol, atau ekspresi, yang disusun dalam baris dan kolom sehingga membentuk suatu bangun…