Untuk menentukan hasil bagi dua bentuk aljabar dapat dilakukan dengan cara menentukan terlebih dahulu faktor sekutu masing-masing bentuk aljabar tersebut, kemudian lakukanlah pembagian pada pembilang dan penyebutnya.
Untuk memantapkan pemahaman Anda tentang cara menentukan operasi pembagian pada bentuk aljabar, silahkan perhatikan contoh soal di bawah ini.
Contoh soal 1
Sederhanakanlah pembagian bentuk aljabar berikut.
- 3xy : 2y
- 6a3b2: 3a2b
- x3y : (x2y2: xy)
- (24p2q + 18pq2) : 3pq
Penyelesaian:
- Faktor sekutu dari 3xy dan 2y adalah y, maka:
<=> 3xy : 2y = 3xy/2y
<=> 3xy : 2y = 3xy/2y
<=> 3xy : 2y = 3x/2
- Faktor sekutu dari 6a3b2dan 3a2b adalah 3a2b, maka:
<=> 6a3b2 : 3a2b = 6a3b2/3a2b
<=> 6a3b2 : 3a2b = (2ab)(3a2b)/3a2b
<=> 6a3b2 : 3a2b = (2ab)
- Kerjakan terlebih dari yang ada di dalam kurung. Faktor sekutu dari x2y2dan xy adalah xy, maka:
<=> x3y : (x2y2 : xy) = x3y : (x2y2/xy)
<=> x3y : (x2y2 : xy) = x3y : (xy.xy/xy)
<=> x3y : (x2y2 : xy) = x3y : xy
Faktor sekutu dari x3y dan xy adalah xy, maka:
<=> x3y : (x2y2 : xy) = x3y : xy
<=> x3y : (x2y2 : xy) = x2.xy : xy
<=> x3y : (x2y2 : xy) = x2
- Faktor sekutu dari 24p2q, 18pq2, dan 3pq adalah 3pq, maka:
<=> (24p2q + 18pq2) : 3pq = 6pq(4p + 3q) : 3pq
<=> (24p2q + 18pq2) : 3pq = 2.3pq(4p + 3q) : 3pq
<=> (24p2q + 18pq2) : 3pq = 2(4p + 3q)
Contoh Soal 2
Sederhanakan bentuk aljabar berikut.
- 16p2: 4p
- 6a6b2: a3b
- 3x2y5: x2y2: xy2
- 15p4q5r3: (6p2qr3: 2pqr)
- (2a2bc2+ 8a3b2c3) : 2abc
- (p3qr2+ p2q2r3– p5q3r2) : p2qr2
Penyelesaian:
- Faktor sekutu dari 16p2dan 4p adalah 4p, maka:
<=> 16p2 : 4p = 4p.4p/4p
<=> 16p2 : 4p = 4p.4p/4p
<=> 16p2 : 4p = 4p
- Faktor sekutu dari 6a6b2dan a3b adalah a3b, maka:
<=> 6a6b2 : a3b = 6a3b.a3b/a3b
<=> 6a6b2 : a3b = 6a3b.a3b/a3b
<=> 6a6b2 : a3b = 6a3b
- 3x2y5: x2y2: xy2
<=> 3x2y5 : x2y2 : xy2 = 3x2y5 : (x.xy2 / xy2)
<=> 3x2y5 : x2y2 : xy2 = x.3xy5 / x
<=> 3x2y5 : x2y2 : xy2 = 3xy5
- 15p4q5r3: (6p2qr3: 2pqr)
= 15p4q5r3 : (3pr2.2pqr / 2pqr)
= 15p4q5r3 /3pr2
= 5p3q5r.3pr2 /3pr2
= 5p3q5r
- (2a2bc2+ 8a3b2c3) : 2abc
= 2abc (ac + 4a2bc2)/2abc
= (ac + 4a2bc2)
- (p3qr2+ p2q2r3– p5q3r2) : p2qr2
= (p2qr2)(p + qr – p3q2)/p2qr2
= (p + qr – p3q2)
Demikianlah postingan kali ini tentang operasi pembagian bentuk aljabar.
Artikel Paling Populer :
- Sifat-Sifat Bilangan Berpangkat Dalam postingan ini, masih dalam pembahsan perpangkatan yakni sifat-sifat bilangan berpangkat. Apa saja sifat-sifat bilangan berpangkat? Sifat perkalian bilangan berpangkat Pada perkalian bilangan berpangkat akan berlaku sifat sebagai berikut: pm × pn =…
- Cara Mengerjakan Operasi Hitung Campuran Pada Bilangan Bulat Operasi hitung campuran pada bilangan bulat sering muncul pada soal-soal ujian nasional (UN). Jadi Anda sangat penting mengetahui cara mengerjakan operasi hitung campuran pada bilangan bulat. Contoh hitung campuran bilangan…
- Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam… Rumus Dan Contoh Soal Polinom atau Suku Banyak Dalam Matematika Perhatikan masalah yang di hadapi seorang peneliti sedang merancangsebuah wadah berbentuk balok dari bahan alumunium. Wadah tersebut harus mampu menampung…
- Bentuk dan Unsur - Unsur Aljabar Tahukah Anda apa pengertian aljabar (algebra)? Menurut Wikipedia, aljabar (algebra) berasal dari Bahasa Arab "al-jabr" yang artinya "hubungan" atau "penyelesaian". Jadi, aljabar merupakan cabang ilmu matematika yang mempelajari hubungan dan penyelesaian…
- Pengertian Persamaan Linear Satu Variabel Masih ingatkah Anda dengan kalimat terbuka dan himpunan menyelesaikan kalimat terbuka? Kalimat terbuka adalah kalimat yang memuat variabel dan belum diketahui nilai kebenarannya, sedangkan himpunan penyelesaian dari kalimat terbuka adalah…
- Cara Menyederhanakan Bilangan Pecahan Masih ingtkah Anda dengan cara menentukan pecahan senilai? Pecahan senilai dapat ditentukan dengan cara mengalikan atau membagi pembilang dan penyebutnya dengan bilangan yang sama, kecuali 1 dan 0 (nol). Contoh bilangan…
- Pengertian Kuadrat dan Akar Kuadrat Bilangan Bulat Pada saat ditingkat SD/MI Anda telah mempelajari kuadrat dan akar kuadrat bilangan bulat. Sekarang pada postingan ini kembali mengulas tentang materi kuadrat dan akar kuadrat dengan tujuan untuk mengingatkan kepada…
- Penyelesaian Persamaan Linear Satu Variabel Bentuk Pecahan Dalam menyelesaikan persamaan linear satu variabel (PLSV) yang berbentuk pecahan caranya hampir sama seperti mengerjakan PLSV yang bentuknya bukan pecahan yang sudah dibahas pada postingan sebelumnya dan tetnunya cara tersebut hampir sama…
- Pengertian Bilangan Pecahan Dalam kehidupan sehari-hari kita sering melihat benda-benda yang dibagi dengan ukuran yang sama, misalnya sebuah apel yang dibagi menjadi dua bagian yang sama dan sebuah kue tar (kue ulang tahun)…
- Penerapan Operasi Hitung Bilangan Bulat operasi hitung pada bilangan bulat yang meliputi operasi penjumlahan, operasi pengurangan, operasi perkalian dan oprasi pembagian. Semua operasi tersebut sekarang kita terapkan pada contoh soal untuk menyelesaikan masalah yang berkaitan dengan kehidupan sehari-hari. Berikut contoh…
- Penyelesaian PLSV dengan Persamaan-Persamaan yang Ekuivalen Sebelumnya kami sudah dibahas tentang cara penyelesain persamaan linear satu variabel dengan cara substitusi (penggantian). Cara itu kelihatan agak ribet karena harus mencoba satu persatu suatu bilangan yang jumlahnya tidak terhingga.…
- Operasi Perkalian pada Bentuk Aljabar Perlu Anda ingat kembali bahwa pada perkalian bilangan bulat akan berlaku sifat distributif perkalian terhadap penjumlahan, yaitu a(b+c) = (ab)+(ac) dan sifat distributif perkalian terhadap pengurangan, yaitu a(b – c) = (ab) – (a…
- Cabang-Cabang Matematika Cabang Matematika Cabang utama matematika adalah aljabar, teori bilangan, geometri dan aritmatika. Berdasarkan cabang-cabang ini utama ini cabang-cabang lain telah ditemukan. Sebelum munculnya zaman modern, studi matematika sangat terbatas. Namun seiring…
- Bilangan Bulat, Sifat-Sifatnya dan Operasinya Bilangan Bulat dan Sifat-sifatnya Dalam Matematika, bilangan bulat adalah kumpulan bilangan cacah dan bilangan negatif. Mirip dengan bilangan cacah, bagian pecahan tidak termasuk di dalamnya. Jadi, kita dapat mengatakan, bilangan…
- Cara Mengubah Pecahan Biasa Menjadi Pecahan Campuran Perlu kita ketahui bahwa bilangan pecahan campuran merupakan bilangan yang terdiri dari bilangan bulat dan bilangan pecahan. Untuk memahami cara mengubah pecahan biasa menjadi pecahan campuran atau dari pecahan campuran menjadi pecahan biasa,…
- Cara Mengubah Bentuk Pecahan ke Bentuk Persen Kita ketahui bahwa pecahan merupakan bilangan yang dinyatakan dengan a/b, di mana a merupakan pembilang dan b merupakan penyebut, sedangkan persen dapat diartikan sebagai perseratus yang ditulis dengan notasi %.…
- Operasi Pembagian pada Bilangan Bulat Untuk memahami operasi pembagian pada bilangan bulat, Anda harus paham dengan konsep operasi perkalian pada bilangan bulat karena pembagian merupakan operasi kebalikan dari perkalian. Untuk lebih mudah memahami pernyataan bahwa operasi kebalikan dari…
- Fungsi Komposisi, Aljabar Fungsi Dan Komposisi… Pengertian, Sifat Fungsi Komposisi, Aljabar Fungsi Dan Komposisi Fungsi Matematika Disertai Rumus Soal Sebuah produk massal biasanya dibuat melalui beberapa proses. Proses-proses tersebut ditangani oleh mesin-mesin yang berbeda. Urutan pengerjaan produk…
- Menentukan Nilai Bentuk Aljabar Dengan Substitusi Sebelumnya kami sudah membahas tentang operasi hitung bentuk aljabar yang meliputi: Operasi penjumlahan dan pengurangan Operasi perkalian Operasi pembagian Operasi perpangkatan Sekarang pada postingan ini Mafia Online akan membahas cara…
- Cara Menentukan Faktor Suatu Bilangan Bulat Cara menentukan faktor suatu bilangan bulat sangat penting dan Anda harus menguasainya karena materi ini merupakan materi dasar untuk menguasai konsep faktor persekutuan terbesar (FPB) yang nantinya akan dibahas setelah…